14 research outputs found
Taguchi-Assisted Optimization Technique and Density Functional Theory for Green Synthesis of a Novel Cu-MOF Derived From Caffeic Acid and Its Anticancerious Activities
In this paper, we have reported an innovative greener method for developing copper-metal organic frameworks (Cu-MOFs) using caffeic acid (CA) as a linker extracted from Satureja hortensis using ultrasonic bath. The density functional theory is used to discuss the Cu-MOF-binding reaction mechanism. In order to achieve a discrepancy between the energy levels of the interactive precursor orbitals, the molecules have been optimized using the B3LYP/6–31G method. The Taguchi method was used to optimize the key parameters for the synthesis of Cu-MOF. FT-IR, XRD, nitrogen adsorption, and SEM analyses are used to characterize it. The adsorption/desorption and SEM analyses suggested that Cu-MOF has a larger surface area of 284.94 m2/g with high porosity. Cu-MOF has shown anticancer activities against the human breast cancer (MDA-MB-468) cell lines, and it could be a potent candidate for clinical applications
Fabrication of Fibrous Materials Based on Cyclodextrin and Egg Shell Waste as an Affordable Composite for Dental Applications
In this study, the fibrous nanostructures based on cyclodextrin from egg shell waste were fabricated using electrospinning technique under optimal conditions. Scanning electron microscopy (SEM), thermal stability analysis and abrasion testing were used to characterise the final products. The cyclodextrin nanofibrous products were used as new nanostructures in the field of dental coatings due to the obtained properties such as uniform shape, small particle size distribution, high thermal stability and optimal abrasion resistance. The DFT calculations confirmed the chemical stability of the final products. The MTT test results confirmed that the fibrous nanocoatings of the egg shell have no significant side effects on healthy cells. These fibrous nanostructures could be a promising candidate for use as a dental nanocoating material
Rapid Synthesis of Cobalt Metal Organic Framework
Metal-organic framework (MOF) has been shown to potential applications due to the high porous hybrid structure. Cobalt MOF was synthesized rapidly by ultrasound energy with about 3,000 m2/g surface area by BET method. Furthermore, this component is Crystalline with significant thermal stability, on account of X-ray diffraction and thermal analysis, respectively. Based on high roughness, crystallinity, and unreported type of FTIR spectrum, a new structure of Co-MOF structure was proposed
Design and Evaluation of Liposomal Sulforaphane-Loaded Polyvinyl Alcohol/Polyethylene Glycol (PVA/PEG) Hydrogels as a Novel Drug Delivery System for Wound Healing
Hydrogel scaffold has been widely applied as drug delivery systems for treating skin injuries. However, the poor drug loading and rapid drug release of hydrogel restricted their application. In the current study, we present a nanoliposome containing sulforaphane (SF) as a nano-drug delivery system that is encapsulated within the scaffold hydrogel system to overcome these limitations and improve wound healing. The hydrogel substrate consisting of 10% polyvinyl alcohol (PVA)/5% polyethylene glycol 400 (PEG400) was prepared by the freeze–thaw method, and the nanoliposomal system was manufactured by the thin film hydration method at different molar ratios of cholesterol: SPC: DPPC: DSPE-PEG2000. The nanoliposome and hydrogel system was characterized by physicochemical analyses. The findings achieved from the optimization of the sulforaphane-loaded nanoliposome (SFNL) displayed an increase in the molar ratio of SPC, leading to a higher entrapment efficiency and a gradual release profile. Narrow size distribution, optimal electrical charge, and the lack of molecular interactions between SF and nanoliposome components in the FTIR analysis make SFNL a suitable drug delivery system for the wound healing process. The obtained SFNL-encapsulated freeze–thawed hydrogel system has sufficient and specific swelling ability at different pH values and increased mechanical strength and elongation. Additionally, the release pattern of SFNL at different pH values showed that the release of SF from liposomes depends on the pH value of the environment and accelerates in line with decreasing pH values. Encapsulation of nanoliposomal SF in the hydrogel structure provides a sustained release pattern of SF compared to its free form and increased as the pH environments continued to raise. The cytotoxicity and cell uptake of SFNL-loaded hydrogels against human skin fibroblasts (HFF cell line) were investigated. The in vitro analyses displayed that the toxicity properties of SF and SFNL were dose-dependent, and SFNL exhibited lower toxicity compared to free SF. Furthermore, the proper cell compatibility of the prepared hydrogel against the HFF cell line was confirmed by the MTT assay. These findings imply that the hydrogel scaffold loaded with SFNL may have wound-healing potential
Application of response surface methodology for optimization of metal–organic framework based pipette-tip solid phase extraction of organic dyes from seawater and their determination with HPLC
Abstract This paper describes the application of response surface methodology (RSM) to develop a miniaturized metal organic framework based pipette-tip solid phase extraction for the extraction of malachite green (MG), rhodamine B (RB), methyl orange (MO) and acid red 18 (AR) dyes from seawater samples and their determination by high performance liquid chromatography. The effects of various parameters such as pH of the sample solution, type and amount of added salt, type and volume of eluent solvent, concentration of surfactant (triton X-114), sample volume, and number of cycles of extraction and desorption were investigated and optimized by two methods of one-variable-at-a-time and RSM based on Box–Behnken design. Under optimum conditions, the linear range of the method was 0.5–200.0 µg/L for RB and MG and 1.0–150.0 µg/L for AR and MO. Limits of detection of the analytes were obtained in the range of 0.09–0.38 µg/L. Reproducibility of the method (as RSD %) was better than 6.4%. The method has been successfully used for analysis of four dyes in seawater of Chabahar Bay
Nanomaterials supported by polymers for tissue engineering applications: A review
In the biomedical sciences, particularly in wound healing, tissue engineering, and regenerative medicine, the development of natural-based biomaterials as a carrier has revealed a wide range of advantages. Tissue engineering is one of the therapeutic approaches used to replace damaged tissue. Polymers have received a lot of attention for their beneficial interactions with cells, but they have some drawbacks, such as poor mechanical properties. Due to their relatively large surface area, nanoparticles can cause significant changes in polymers and improve their mechanical properties. The nanoparticles incorporated into biomaterial scaffolds have been associated with positive effects on cell adhesion, viability, proliferation, and migration in the majority of studies. This review paper discusses recent applications of polymer-nanoparticle composites in the development of tissue engineering scaffolds, as well as the effects of these nanomaterials in the fields of cardiovascular, neural, bone, and skin tissue engineering
A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems
Doxorubicin (DOX) is an effective anticancer drug used for the treatment of osteosarcoma. Liposomal nanocarriers for doxorubicin administration are now regarded as one of the most promising approaches to overcome multiple drug resistance and adverse side effects. The use of hydrogel as a 3D scaffold to mimic the cellular environment and provide comparable biological conditions for deeper investigations of cellular processes has attracted considerable attention. This study aimed to evaluate the impact of liposomal doxorubicin on the osteosarcoma cell line in the presence of alginate hydrogel as a three-dimensional scaffold. Different liposomal formulations based on cholesterol, phospholipids, and surfactants containing doxorubicin were developed using the thin-layer hydration approach to improve therapeutic efficacy. The final selected formulation was superficially modified using DSPE-mPEG2000. A three-dimensional hydrogel culture model with appropriate structure and porosity was synthesized using sodium alginate and calcium chloride as crosslinks for hydrogel. Then, the physical properties of liposomal formulations, such as mechanical and porosity, were characterized. The toxicity of the synthesized hydrogel was also assessed. Afterward, the cytotoxicity of nanoliposomes was analyzed on the Saos-2 and HFF cell lines in the presence of a three-dimensional alginate scaffold using the MTT assay. The results indicated that the encapsulation efficiency, the amount of doxorubicin released within 8 h, the mean size of vesicles, and the surface charge were 82.2%, 33.0%, 86.8 nm, and −4.2 mv, respectively. As a result, the hydrogel scaffolds showed sufficient mechanical resistance and suitable porosity. The MTT assay demonstrated that the synthesized scaffold had no cytotoxicity against cells, while nanoliposomal DOX exhibited marked toxicity against the Saos-2 cell line in the 3D culture medium of alginate hydrogel compared to the free drug in the 2D culture medium. Our research showed that the 3D culture model physically resembles the cellular matrix, and nanoliposomal DOX with proper size could easily penetrate into cells and cause higher cytotoxicity compared to the 2D cell culture
Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient’s survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements
Gene Expression Programming Model for Tribological Behavior of Novel SiC–ZrO<sub>2</sub>–Al Hybrid Composites
In order to improve product format quality and material flexibility, variety of application, and cost-effectiveness, SiC, ZrO2, and Al hybrid composites were manufactured in the research utilizing the powder metallurgy (PM) technique. A model was created to predict the tribological behavior of SiC–ZrO2–Al hybrid composites using statistical data analysis and gene expression programming (GEP) based on artificial intelligence. For the purpose of examining the impact of zirconia concentration, sliding distance, and applied stress on the wear behavior of hybrid composites, a comprehensive factor design of experiments was used. The developed GEP model was sufficiently robust to achieve extremely high accuracy in the prediction of the determine coefficient (R2), the root mean square error (RMSE), and the root relative square error (RRSE). The maximum state of the RMSE was 0.4357 for the GEP-1 (w1) model and the lowest state was 0.7591 for the GEP-4 (w1) model, while the maximum state of the RRSE was 0.4357 for the GEP-1 (w1) model and the minimum state was 0.3115 for the GEP-3 model (w1)