217 research outputs found
Recommended from our members
Relational aesthetics and emotional relations: Leadership on board merchant marine ships
This study discusses research in an environment which is not widely associated with either aesthetics or emotion. Life on board a merchant marine ship is completely unknown to most people. It is thought of as a very closed, tough, male environment, where a number of people are more or less imprisoned in a steel cage floating in the sea. Few outsiders have any concept of what they actually do on board ship, but they assume the experience must be too painful to dwell on; it must be one of those jobs that people do in order to amass cash with which to enjoy themselves between tours of duty.
This research has involved seventeen interviews with captains, first officers, chief engineers, seamen and seascape painter. My original purpose was to look at leadership on board ships, but my early findings showed that the leadership relationships on board merchant marine ships involved the open expression of much emotion, and were very often full of aesthetic appreciation of both the sea and the ship. I also interviewed a professional seascape painter, in order to be able to compare his take on the aesthetics and emotions of the sea with those of my seafarers. In this research I examine two themes which came strongly from my interviews; relational aesthetics and emotional relations.
This interpretive study on leadership and aesthetics illustrates that in most of our everyday practical activities we rely on our senses and develop intuitions we can trust. When important issues arise, regardless of what others may say, our own senses and intuitions are our best guides for action.
Aesthetic knowledge gained by seamen through practical judgments becomes most critical at sea. In order to give meaning to their lives and work, people need to have 'real' relationships: love with pathos, feelings of responsibility for their fellows. The relationships they build at sea are works of art, created through human interaction, within which conversation becomes both more poetic and more 'real'.
Art and poetry transcend rationality and objectivity and put us in touch with the more important reality of our feelings and intuitions. We gain this awareness through imagination rather than reason. The language of the imagination, especially metaphor, is necessary for expressing the unique and most personally significant aspects of our experience.
Those who exercise leadership on merchant marine ships have strong views on the importance of understanding aesthetics and emotions through phronesis and the knowledge they gain becomes crucial in discharging their responsibilities, and this was born out strongly in my interviews
Gamma spectrometry in the ITWG CMX-4 exercise
Low enriched uranium samples of unknown origin were analyzed by 16 laboratories in the context of a Collaborative Materials Exercise (CMX), organized by the Nuclear Forensics International Technical Working Group (ITWG). The purpose was to compare and prioritize nuclear forensic methods and techniques, and to evaluate attribution capabilities among participants. This paper gives a snapshot of the gamma spectrometric capabilities of the participating laboratories and summarizes the results achieved by gamma spectrometry
Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology
It has been recently suggested by Dvali and Vikman that the superluminal
neutrino phenomenology of the OPERA experiment may be due to an environmental
feature of the Earth, naturally yielding a long-range fifth force of
gravitational origin whose coupling with the neutrino is set by the scale M_*,
in units of reduced Planck mass. Its characteristic length lambda should not be
smaller than one Earth's radius R_e, while its upper bound is expected to be
slightly smaller than the Earth-Moon distance (60 R_e). We analytically work
out some orbital effects of a Yukawa-type fifth force for a test particle
moving in the modified field of a central body. Our results are quite general
since they are not restricted to any particular size of lambda; moreover, they
are valid for an arbitrary orbital configuration of the particle, i.e. for any
value of its eccentricity . We find that the dimensionless strength coupling
parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <=
lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS
II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to
obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <=
lambda = 3 10^10 - 4.5 10^10. Our results
are neither necessarily limited to the superluminal OPERA scenario nor to the
Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast
with our bounds: they generally extend to any theoretical scenario implying a
fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference
Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets
A measurement of beam-helicity asymmetries for single-hadron production in
deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV
electrons and positrons off gaseous hydrogen and deuterium targets were
collected by the HERMES experiment. The asymmetries are presented separately as
a function of the Bjorken scaling variable, the hadron transverse momentum, and
the fractional energy for charged pions and kaons as well as for protons and
anti-protons. These asymmetries are also presented as a function of the three
aforementioned kinematic variables simultaneously
The Q^2-Dependence of Nuclear Transparency for Exclusive Production
Exclusive coherent and incoherent electroproduction of the meson
from H and N targets has been studied at the HERMES experiment as a
function of coherence length (), corresponding to the lifetime of hadronic
fluctuations of the virtual photon, and squared four-momentum of the virtual
photon (). The ratio of N to H cross sections per nucleon,
known as nuclear transparency, was found to increase (decrease) with increasing
coherence length for coherent (incoherent) electroproduction. For
fixed coherence length, a rise of nuclear transparency with is observed
for both coherent and incoherent production, which is in agreement
with theoretical calculations of color transparency.Comment: 5 pages, 4 figure
Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with the simulations for two very different low-frequency interferometers, the Murchison Widefield Array and the MIT Epoch of Reionization (MITEoR) experiment. We then apply the method to the MITEoR data set collected in 2013 July to obtain the first northern sky map from 128 to 175 MHz at ∼2° resolution and find an overall spectral index of −2.73 ± 0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as Hydrogen Epoch of Reionization Array. Both the MITEoR interferometric data and the 150 MHz sky map are available at http://space.mit.edu/home/tegmark/omniscope.html.National Science Foundation (U.S.) (AST-0908848)National Science Foundation (U.S.) (AST-1105835)National Science Foundation (U.S.) (AST-1440343
Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon
Bose-Einstein correlations of like-sign charged hadrons produced in
deep-inelastic electron and positron scattering are studied in the HERMES
experiment using nuclear targets of H, H, He, He, N, Ne, Kr,
and Xe. A Gaussian approach is used to parametrize a two-particle correlation
function determined from events with at least two charged hadrons of the same
sign charge. This correlation function is compared to two different empirical
distributions that do not include the Bose-Einstein correlations. One
distribution is derived from unlike-sign hadron pairs, and the second is
derived from mixing like-sign pairs from different events. The extraction
procedure used simulations incorporating the experimental setup in order to
correct the results for spectrometer acceptance effects, and was tested using
the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein
correlations for all target nuclei without a significant variation with the
nuclear target mass are found. Also, no evidence for a dependence on the
invariant mass W of the photon-nucleon system is found when the results are
compared to those of previous experiments
Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target
Single-spin asymmetries for semi-inclusive electroproduction of charged pions
in deep-inelastic scattering of positrons are measured for the first time with
transverse target polarization. The asymmetry depends on the azimuthal angles
of both the pion () and the target spin axis () about the virtual
photon direction and relative to the lepton scattering plane. The extracted
Fourier component \cmpi is a signal of the previously unmeasured quark
transversity distribution, in conjunction with the so-called Collins
fragmentation function, also unknown. The Fourier component \smpi of the
asymmetry arises from a correlation between the transverse polarization of the
target nucleon and the intrinsic transverse momentum of quarks, as represented
by the previously unmeasured Sivers distribution function. Evidence for both
signals is observed, but the Sivers asymmetry may be affected by exclusive
vector meson productio
- …