83 research outputs found

    Pulse Tripling Circuit and Twelve Pulse Rectifier Combination for Sinusoidal Input Current

    Get PDF
    In this paper, a novel pulse tripling circuit (PTC) is suggested, to upgrade a polygon autotransformer 12-pulse rectifier (12-PR) to a 36-pulse rectifier (36-PR) with a low power rating. The kVA rating of the proposed PTC is lower compared to the conventional one (about 1.57% of load power). Simulation and experimental test results show that the total harmonic distortion (THD) of the input current of the suggested 36-PR is less than 3%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other multi-pulse rectifiers (MPR), it is cost-effective, its power factor is near unity and its rating is about 24% of the load rating. Therefore, the proposed 36-PR can be considered as a practical solution for industrial applications

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    A New Robust Nonlinear Control Strategy for UIPC in Isolated Hybrid Microgrids

    Get PDF
    This paper focuses on the control of unified interphase power controller (UIPC) in isolated hybrid microgrids (HmGs), where the UIPC is used as the main component for interconnecting of AC and DC sub-grids. The investigated HmG encompasses two AC sub-grids and one purely storage DC sub-grid (PSDC) and multiple adjustable loads. A robust nonlinear model reference adaptive control (NMRC) strategy is offered for controlling the UIPC, keeping an acceptable two-way power exchange control with uncomplicated topology. Further, a novel configuration for the DC link power converter is suggested using the dual-active-bridge topology. Also, a harmonic-based modeling method is used to model the UIPC's power converter. The proposed configuration provides bidirectional power flow, increased power density, straightforward adaptation of zero-voltage switching, and direct access to cascading and parallelism to increase the ratings and reliability of UIPC. The simulation results illustrate the feasibility of the suggested topology for isolated HmGs

    Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids

    Get PDF
    In this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at PCC, current harmonics compensation scenario is selected in order to avoid excessive injection of harmonics by the main grid. In both scenarios, compensation is performed by the interface converters of distributed generation (DG) units. Also, to decrease the asymmetry among phase impedances of MG, a novel structure is proposed to generate virtual impedance. At fundamental frequency, the proposed structure for the virtual impedance improves the control of the fundamental component of power, and at harmonic frequencies, it acts to adaptively improve nonlinear load sharing among DG units. In the structures of the proposed harmonics compensator and the proposed virtual impedance, a self-tuning filter (STF) is used for separating the fundamental component from the harmonic components. This STF decreases the number of phase locked loops (PLLs). Simulation results in MATLAB/SIMULINK environment show the efficiency of the proposed approach in improving load sharing and decreasing voltage and current harmonics

    An Improved 24-Pulse Rectifier for Harmonic Mitigation in More Electric Aircraft

    Get PDF
    Abstract To increase the power rating and reduce the cost and complexity of a multi‐pulse rectifier (MPR), it is well known that the pulse number must be increased. In some practical cases, a 12‐pulse rectifier (12PR) is suggested as a good solution considering its relatively simple structure and low weight. However, 12‐pulse rectifiers cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore they must be used along with output filters. Two cost‐effective 24‐pulse rectifiers (24PRs) are suggested in the article, which consist of a polygon autotransformer 12PR and two pulse doubling circuits (PDCs) at dc link. The first PDC (PDC1) is based on an inter‐phase transformer (IPT) with a step‐up secondary winding, and the second one (PDC2) is based on an IPT with a step‐down secondary winding. To show the advantages of the proposed combinations compared with other solutions, simulation results are used, and also a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the total harmonic distortion (%THD) of the input current for the 12PR with PDC1 is less than 3.67%, and the 12PR with PDC2 is less than 1.45%, which meets the IEEE 519 and DO‐160G requirements. Also, it is shown that in comparison with other solutions, the proposed two configurations are cost‐effective, power factor is near unity, rating is almost 29% of the load rating, and the efficiency is almost 97.5%, which makes them a practical solution for more electric aircraft
    • 

    corecore