658 research outputs found

    Role of structural defects on exchange bias in the epitaxial CoO/Co system

    Full text link
    We have studied the influence of non-magnetic defects throughout the antiferromagnet Co_{1-y}O on the exchange bias (EB) in epitaxially grown Co_{1-y}O/Co bilayers. These defects are either substitutional or structural (twin boundaries and surface morphology) which both lead to an increase of the EB-field. We find a dominance of twin boundaries over surface morphology (roughness) in enhancing EB which is consistent with the domain state model for exchange bias. In contrast, the crystal orientation of the Co_{1-y}O layer does not show a significant effect on the EB in this system.Comment: 10 pages, 2 figure

    Origin of training effect of exchange bias in Co/CoO due to irreversible thermoremanent magnetization of the magnetically diluted antiferromagnet

    Full text link
    The irreversible thermoremanent magnetization of a sole, magnetically diluted epitaxial antiferromagnetic Co1y_{1-y}O(100) layer is determined by the mean of its thermoremanent magnetizations at positive and negative remanence. During hysteresis-loop field cycling, thermoremanent magnetization exhibits successive reductions, consistent with the training effect (TE) of the exchange bias measured for the corresponding Co1y_{1-y}O(100)/Co bilayer. The TE of exchange bias is shown to have its microscopic origin in the TE of the irreversible thermoremanent magnetization of the magnetically diluted AFM

    Predicting complicated appendicitis based on clinical findings: the role of Alvarado and appendicitis inflammatory response scores

    Get PDF
    PURPOSE: The pre-interventional differentiation between complicated and uncomplicated appendicitis is decisive for treatment. In the context of conservative therapy, the definitive diagnosis of uncomplicated appendicitis is mandatory. This study investigates the ability of clinical scoring systems and imaging to differentiate between the two entities. METHODS: This is a retrospective analysis of two cohorts from two tertiary referral centers in Switzerland and Germany. All consecutive patients underwent appendectomy between January 2008 and April 2013 (in the first cohort) or between January 2017 and June 2019 (the second cohort). Exclusion criteria did not apply as all patients found by the database search and received an appendectomy were included. Diagnostic testing and calculation of a receiver operating curve were performed to identify a cutoff for clinical scores that resulted in a minimum sensitivity of 90% to detect complicated appendicitis. The cutoff was combined with additional diagnostic imaging criteria to see if diagnostic properties could be improved. RESULTS: Nine hundred fifty-six patients were included in the analysis. Two hundred twenty patients (23%) had complicated appendicitis, and 736 patients (77%) had uncomplicated appendicitis or no inflammation. The complicated appendicitis cohort had a mean Alvarado score of 7.03 and a mean AIR of 5.21. This compared to a mean Alvarado of 6.53 and a mean AIR of 4.07 for the uncomplicated appendicitis cohort. The highest Alvarado score with a sensitivity of > 90% to detect complicated appendicitis was >== 5 (sensitivity = 95%, specificity 8.99%). The highest AIR score with a sensitivity of > 90% to detect complicated appendicitis was >== 3 (sensitivity 91.82%, specificity 18.53). The analysis showed that additional CT information did not improve the sensitivity of the proposed cut-offs. CONCLUSION: AIR and Alvarado scores showed limited capability to distinguish between complicated and uncomplicated appendicitis even with additional imaging in this retrospective cohort. As conservative management of appendicitis needs to exclude patients with complicated disease reliably, appendectomy seems until now to remain the safest option to prevent undertreatment of this mostly benign disease

    Impact of RNA degradation on gene expression profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis.</p> <p>Methods</p> <p>To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences.</p> <p>Results</p> <p>The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end.</p> <p>Conclusions</p> <p>Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings.</p

    Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Get PDF
    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut
    corecore