324 research outputs found

    Effectiveness of computer-based auditory training in improving the perception of noise-vocoded speech

    Get PDF
    Five experiments were designed to evaluate the effectiveness of “high-variability” lexical training in improving the ability of normal-hearing subjects to perceive noise-vocoded speech that had been spectrally shifted to simulate tonotopic misalignment. Two approaches to training were implemented. One training approach required subjects to recognize isolated words, while the other training approach required subjects to recognize words in sentences. Both approaches to training improved the ability to identify words in sentences. Improvements following a single session (lasting 1–2 h) of auditory training ranged between 7 and 12 %pts and were significantly larger than improvements following a visual control task that was matched with the auditory training task in terms of the response demands. An additional three sessions of word- and sentence-based training led to further improvements, with the average overall improvement ranging from 13 to 18 %pts. When a tonotopic misalignment of 3 mm rather than 6 mm was simulated, training with several talkers led to greater generalization to new talkers than training with a single talker. The results confirm that computer-based lexical training can help overcome the effects of spectral distortions in speech, and they suggest that training materials are most effective when several talkers are included

    Perceived importance of components of asynchronous music in circuit training

    Get PDF
    This study examined regular exercisers’ perceptions of specific components of music during circuit training. Twenty-four men (38.8 years, s = 11.8 years) and 31 women (32.4 years, s = 9.6 years) completed two questionnaires immediately after a circuit training class. Participants rated the importance of 13 components of music (rhythm, melody, etc.) in relation to exercise enjoyment, and each completed the Affect Intensity Measure (Larsen, 1984) to measure emotional reactivity. Independent t tests were used to evaluate gender differences in perceptions of musical importance. Pearson correlations were computed to evaluate the relationships between affect intensity, age and importance of musical components. Consistent with previous research and theoretical predictions, rhythm response components (rhythm, tempo, beat) were rated as most important. Women rated the importance of melody significantly higher than did men, while men gave more importance to music associated with sport. Affect intensity was found to be positively and significantly related to the perceived importance of melody, lyrical content, musical style, personal associations and emotional content. Results suggest that exercise leaders need to be sensitive to personal factors when choosing music to accompany exercise. Qualitative research that focuses on the personal meaning of music is encouraged

    Exploring the Free Energy Landscape: From Dynamics to Networks and Back

    Get PDF
    The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers are, how the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times or rate constants, and the hierarchical relationship among basins, complete the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, the dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press

    Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation

    Full text link
    In this paper, we investigate the conformational dynamics of alanine dipeptide under an external electric field by nonequilibrium molecular dynamics simulation. We consider the case of a constant and of an oscillatory field. In this context we propose a procedure to implement the temperature control, which removes the irrelevant thermal effects of the field. For the constant field different time-scales are identified in the conformational, dipole moment, and orientational dynamics. Moreover, we prove that the solvent structure only marginally changes when the external field is switched on. In the case of oscillatory field, the conformational changes are shown to be as strong as in the previous case, and non-trivial nonequilibrium circular paths in the conformation space are revealed by calculating the integrated net probability fluxes.Comment: 23 pages, 12 figure

    Dimensional Reduction of Fermions in Brane Worlds of the Gross-Neveu Model

    Full text link
    We study the dimensional reduction of fermions, both in the symmetric and in the broken phase of the 3-d Gross-Neveu model at large N. In particular, in the broken phase we construct an exact solution for a stable brane world consisting of a domain wall and an anti-wall. A left-handed 2-d fermion localized on the domain wall and a right-handed fermion localized on the anti-wall communicate with each other through the 3-d bulk. In this way they are bound together to form a Dirac fermion of mass m. As a consequence of asymptotic freedom of the 2-d Gross-Neveu model, the 2-d correlation length \xi = 1/m increases exponentially with the brane separation. Hence, from the low-energy point of view of a 2-d observer, the separation of the branes appears very small and the world becomes indistinguishable from a 2-d space-time. Our toy model provides a mechanism for brane stabilization: branes made of fermions may be stable due to their baryon asymmetry. Ironically, our brane world is stable only if it has an extreme baryon asymmetry with all states in this ``world'' being completely filled.Comment: 26 pages, 7 figure

    Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes

    Full text link
    When network and graph theory are used in the study of complex systems, a typically finite set of nodes of the network under consideration is frequently either explicitly or implicitly considered representative of a much larger finite or infinite region or set of objects of interest. The selection procedure, e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants of various commonly used statistical network measures. The practical relevance and applicability of our approach is demonstrated for a number of example networks from different fields of research, and is shown to be of fundamental importance in particular in the study of spatially embedded functional networks derived from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure

    Beyond the Binding Site: The Role of the β2 – β3 Loop and Extra-Domain Structures in PDZ Domains

    Get PDF
    A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity
    corecore