324 research outputs found
Effectiveness of computer-based auditory training in improving the perception of noise-vocoded speech
Five experiments were designed to evaluate the effectiveness of “high-variability” lexical training in improving the ability of normal-hearing subjects to perceive noise-vocoded speech that had been spectrally shifted to simulate tonotopic misalignment. Two approaches to training were implemented. One training approach required subjects to recognize isolated words, while the other training approach required subjects to recognize words in sentences. Both approaches to training improved the ability to identify words in sentences. Improvements following a single session (lasting 1–2 h) of auditory training ranged between 7 and 12 %pts and were significantly larger than improvements following a visual control task that was matched with the auditory training task in terms of the response demands. An additional three sessions of word- and sentence-based training led to further improvements, with the average overall improvement ranging from 13 to 18 %pts. When a tonotopic misalignment of 3 mm rather than 6 mm was simulated, training with several talkers led to greater generalization to new talkers than training with a single talker. The results confirm that computer-based lexical training can help overcome the effects of spectral distortions in speech, and they suggest that training materials are most effective when several talkers are included
Perceived importance of components of asynchronous music in circuit training
This study examined regular exercisers’ perceptions of specific components of music
during circuit training. Twenty-four men (38.8 years, s = 11.8 years) and 31 women
(32.4 years, s = 9.6 years) completed two questionnaires immediately after a circuit
training class. Participants rated the importance of 13 components of music (rhythm,
melody, etc.) in relation to exercise enjoyment, and each completed the Affect Intensity
Measure (Larsen, 1984) to measure emotional reactivity. Independent t tests were used
to evaluate gender differences in perceptions of musical importance. Pearson
correlations were computed to evaluate the relationships between affect intensity, age
and importance of musical components. Consistent with previous research and
theoretical predictions, rhythm response components (rhythm, tempo, beat) were rated
as most important. Women rated the importance of melody significantly higher than did
men, while men gave more importance to music associated with sport. Affect intensity
was found to be positively and significantly related to the perceived importance of
melody, lyrical content, musical style, personal associations and emotional content.
Results suggest that exercise leaders need to be sensitive to personal factors when
choosing music to accompany exercise. Qualitative research that focuses on the
personal meaning of music is encouraged
Exploring the Free Energy Landscape: From Dynamics to Networks and Back
The knowledge of the Free Energy Landscape topology is the essential key to
understand many biochemical processes. The determination of the conformers of a
protein and their basins of attraction takes a central role for studying
molecular isomerization reactions. In this work, we present a novel framework
to unveil the features of a Free Energy Landscape answering questions such as
how many meta-stable conformers are, how the hierarchical relationship among
them is, or what the structure and kinetics of the transition paths are.
Exploring the landscape by molecular dynamics simulations, the microscopic data
of the trajectory are encoded into a Conformational Markov Network. The
structure of this graph reveals the regions of the conformational space
corresponding to the basins of attraction. In addition, handling the
Conformational Markov Network, relevant kinetic magnitudes as dwell times or
rate constants, and the hierarchical relationship among basins, complete the
global picture of the landscape. We show the power of the analysis studying a
toy model of a funnel-like potential and computing efficiently the conformers
of a short peptide, the dialanine, paving the way to a systematic study of the
Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press
Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation
In this paper, we investigate the conformational dynamics of alanine
dipeptide under an external electric field by nonequilibrium molecular dynamics
simulation. We consider the case of a constant and of an oscillatory field. In
this context we propose a procedure to implement the temperature control, which
removes the irrelevant thermal effects of the field. For the constant field
different time-scales are identified in the conformational, dipole moment, and
orientational dynamics. Moreover, we prove that the solvent structure only
marginally changes when the external field is switched on. In the case of
oscillatory field, the conformational changes are shown to be as strong as in
the previous case, and non-trivial nonequilibrium circular paths in the
conformation space are revealed by calculating the integrated net probability
fluxes.Comment: 23 pages, 12 figure
Dimensional Reduction of Fermions in Brane Worlds of the Gross-Neveu Model
We study the dimensional reduction of fermions, both in the symmetric and in
the broken phase of the 3-d Gross-Neveu model at large N. In particular, in the
broken phase we construct an exact solution for a stable brane world consisting
of a domain wall and an anti-wall. A left-handed 2-d fermion localized on the
domain wall and a right-handed fermion localized on the anti-wall communicate
with each other through the 3-d bulk. In this way they are bound together to
form a Dirac fermion of mass m. As a consequence of asymptotic freedom of the
2-d Gross-Neveu model, the 2-d correlation length \xi = 1/m increases
exponentially with the brane separation. Hence, from the low-energy point of
view of a 2-d observer, the separation of the branes appears very small and the
world becomes indistinguishable from a 2-d space-time. Our toy model provides a
mechanism for brane stabilization: branes made of fermions may be stable due to
their baryon asymmetry. Ironically, our brane world is stable only if it has an
extreme baryon asymmetry with all states in this ``world'' being completely
filled.Comment: 26 pages, 7 figure
Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes
When network and graph theory are used in the study of complex systems, a
typically finite set of nodes of the network under consideration is frequently
either explicitly or implicitly considered representative of a much larger
finite or infinite region or set of objects of interest. The selection
procedure, e.g., formation of a subset or some kind of discretization or
aggregation, typically results in individual nodes of the studied network
representing quite differently sized parts of the domain of interest. This
heterogeneity may induce substantial bias and artifacts in derived network
statistics. To avoid this bias, we propose an axiomatic scheme based on the
idea of node splitting invariance to derive consistently weighted variants of
various commonly used statistical network measures. The practical relevance and
applicability of our approach is demonstrated for a number of example networks
from different fields of research, and is shown to be of fundamental importance
in particular in the study of spatially embedded functional networks derived
from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure
Beyond the Binding Site: The Role of the β2 – β3 Loop and Extra-Domain Structures in PDZ Domains
A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity
- …