92 research outputs found

    CRLB Based Optimal Noise Enhanced Parameter Estimation Using Quantized Observations

    Get PDF
    Cataloged from PDF version of article.In this letter, optimal additive noise is characterized for parameter estimation based on quantized observations. First, optimal probability distribution of noise that should be added to observations is formulated in terms of a Cramer–Rao lower bound (CRLB) minimization problem. Then, it is proven that optimal additive “noise” can be represented by a constant signal level, which means that randomization of additive signal levels is not needed for CRLB minimization. In addition, the results are extended to the cases in which there exists prior information about the unknown parameter and the aim is to minimize the Bayesian CRLB (BCRLB). Finally, a numerical example is presented to explain the theoretical results

    TW-TOA based positioning in the presence of clock imperfections

    Get PDF
    This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measurements in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchronized with the reference time. Since the optimal estimator for this problem involves difficult nonconvex optimization, two suboptimal estimators are proposed based on the squared-range least squares and the least absolute mean of residual errors. We formulated the former approach as an extended general trust region subproblem (EGTR) and propose a simple technique to solve it approximately. The latter approach is formulated as a difference of convex functions programming (DCP), which can be solved using a concave–convex procedure. Simulation results illustrate the high performance of the proposed techniques, especially for the DCP approach

    Evaluation metrics for measuring bias in search engine results

    Get PDF
    Search engines decide what we see for a given search query. Since many people are exposed to information through search engines, it is fair to expect that search engines are neutral. However, search engine results do not necessarily cover all the viewpoints of a search query topic, and they can be biased towards a specific view since search engine results are returned based on relevance, which is calculated using many features and sophisticated algorithms where search neutrality is not necessarily the focal point. Therefore, it is important to evaluate the search engine results with respect to bias. In this work we propose novel web search bias evaluation measures which take into account the rank and relevance. We also propose a framework to evaluate web search bias using the proposed measures and test our framework on two popular search engines based on 57 controversial query topics such as abortion, medical marijuana, and gay marriage. We measure the stance bias (in support or against), as well as the ideological bias (conservative or liberal). We observe that the stance does not necessarily correlate with the ideological leaning, e.g. a positive stance on abortion indicates a liberal leaning but a positive stance on Cuba embargo indicates a conservative leaning. Our experiments show that neither of the search engines suffers from stance bias. However, both search engines suffer from ideological bias, both favouring one ideological leaning to the other, which is more significant from the perspective of polarisation in our society

    TDOA based positioning in the presence of unknown clock skew

    Get PDF
    Cataloged from PDF version of article.This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramer-Rao ´ lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    TDOA Based Positioning in the Presence of Unknown Clock Skew

    Get PDF
    This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramér-Rao lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    Distributed Bounding of Feasible Sets in Cooperative Wireless Network Positioning

    Get PDF
    Locations of target nodes in cooperative wireless sensor networks can be confined to a number of feasible sets in certain situations, e.g., when the estimated distances between sensors are larger than the actual distances. Quantifying feasible sets is often challenging in cooperative positioning. In this letter, we propose an iterative technique to cooperatively outer approximate the feasible sets containing the locations of the target nodes. We first outer approximate a feasible set including a target node location by an ellipsoid. Then, we extend the ellipsoid with the measured distances between sensor nodes and obtain larger ellipsoids. The larger ellipsoids are used to determine the intersections containing other targets. Simulation results show that the proposed technique converges after a small number of iterations

    A low power routing algorithm for localization in IEEE 802.15.4 networks

    Get PDF
    Many context-aware applications rely on the knowledge of the position of the user and the surrounding objects to provide advanced, personalized and real-time services. In wide-area deployments, a routing protocol is needed to collect the location information from distant nodes. In this paper, we propose a new source-initiated (on demand) routing protocol for location-aware applications in IEEE 802.15.4 wireless sensor networks. This protocol uses a low power MAC layer to maximize the lifetime of the network while maintaining the communication delay to a low value. Its performance is assessed through experimental tests that show a good trade-off between power consumption and time delay in the localization of a mobile device

    Error rate analysis of cognitive radio transmissions with imperfect channel sensing

    Get PDF
    This paper studies the symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. Two different transmission schemes, namely sensing-based spectrum sharing (SSS) and opportunistic spectrum access (OSA), are considered. In both schemes, secondary users first perform channel sensing, albeit with possible errors. In SSS, depending on the sensing decisions, they adapt the transmission power level and coexist with primary users in the channel. On the other hand, in OSA, secondary users are allowed to transmit only when the primary user activity is not detected. Initially, for both transmission schemes, general formulations for the optimal decision rule and error probabilities are provided for arbitrary modulation schemes under the assumptions that the receiver is equipped with the sensing decision and perfect knowledge of the channel fading, and the primary user's received faded signals at the secondary receiver has a Gaussian mixture distribution. Subsequently, the general approach is specialized to rectangular quadrature amplitude modulation (QAM). More specifically, the optimal decision rule is characterized for rectangular QAM, and closed-form expressions for the average symbol error probability attained with the optimal detector are derived under both transmit power and interference constraints. The effects of imperfect channel sensing decisions, interference from the primary user and its Gaussian mixture model, and the transmit power and interference constraints on the error rate performance of cognitive transmissions are analyzed. © 2014 IEEE
    corecore