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CRLB Based Optimal Noise Enhanced Parameter
Estimation Using Quantized Observations
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Abstract—In this letter, optimal additive noise is characterized
for parameter estimation based on quantized observations. First,
optimal probability distribution of noise that should be added to
observations is formulated in terms of a Cramer–Rao lower bound
(CRLB) minimization problem. Then, it is proven that optimal ad-
ditive “noise” can be represented by a constant signal level, which
means that randomization of additive signal levels is not needed
for CRLB minimization. In addition, the results are extended to
the cases in which there exists prior information about the un-
known parameter and the aim is to minimize the Bayesian CRLB
(BCRLB). Finally, a numerical example is presented to explain the
theoretical results.

Index Terms—Cramer–Rao lower bound, estimation, noise en-
hanced estimation, quantization.

I. INTRODUCTION

A LTHOUGH noise commonly degrades the performance
of a system, some nonlinear systems can benefit from

addition of noise to their inputs or from increased noise levels
[1], [2]. Advantages of additive noise are investigated also for
parameter estimation problems. In the frequency estimation
problem studied in [3], it is observed that, under certain condi-
tions, the mean-squared error (MSE) of the optimal Bayesian
estimator can reduce when the noise level is raised. Similarly,
[4] considers Bayesian estimation and provides examples of
when increased noise levels result in improved MSE perfor-
mance. In [3] and [4], 1-bit quantizers are employed and noise
benefits are observed due to the nonlinear structure of the
quantizers. In addition, [5] studies parameter estimation based
on 1-bit dithered quantization and proposes an estimator that
does not require any information about the dither signal and the
noise distribution. In another noise enhanced estimation study
[6], the first and the second moments of an estimator and a
Bayesian cost function are used as performance criteria and the
general form of the optimal noise probability density function
(p.d.f.) is derived.

For some noise enhanced parameter estimation problems,
asymptotical behaviors of the estimators make the Cramer–Rao
lower bound (CRLB), equivalently the Fisher information,
an appealing metric for the quantification of performance
improvements via additive noise. For example, maximization
of the Fisher information for parameter estimation based on
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Fig. 1. Block diagram of the system, where � denotes the additive noise that
is independent of the original observation �.

quantized observations is studied in [7] by optimizing quanti-
zation intervals. In addition, the dependence of the MSE of a
mean estimator on the probability distribution of observation
noise is investigated in [8] and theoretical lower bounds are
provided. In [9], parameter estimation based on observations
from a multi-bit quantizer is considered and additive controlled
perturbation of the quantizer thresholds is investigated. In
particular, [9] shows that random dithering can significantly
reduce the CRLB for the mean estimation problem with 1-bit
precision sampling. Moreover, it is shown in [10] that the
variance of an estimator that uses 1-bit quantizer outputs can be
made quite close to the variance of a clairvoyant estimator that
uses unquantized observations by an appropriate choice of the
quantizer threshold. Furthermore, addition of noise to quantized
measurements can provide enhancement of the Fisher infor-
mation for the estimation of the suprathreshold input signals
[11]. Finally, maximization of the Fisher information by both
an appropriate choice of the quantizer threshold and additive
noise is studied in [12].

Although the effects of additive noise on CRLBs have been
investigated in [9], [11] and [12], the optimal p.d.f. of additive
noise that minimizes the CRLB for parameter estimation based
on quantized observations has not been obtained before. In this
letter, a parameter estimation problem based on quantized ob-
servations is studied, where the aim to find the optimal p.d.f. of
noise that should be added to the observations before the quan-
tizer in order to minimize the CRLB for estimating the unknown
parameter (cf. Fig. 1). Unlike the previous studies, an explicit
CRLB minimization problem is formulated in terms of the ad-
ditive noise p.d.f., the quantization function, and the p.d.f. of the
original observation. It is first shown, for a given value of the pa-
rameter, that optimal additive “noise” can be represented by a
specific constant value. In addition, the results are extended to
the cases in which there exists prior information about the un-
known parameter, and it is shown that the Bayesian Cramer–Rao
lower bound (BCRLB) is minimized when the additive “noise”
is represented by a constant value.

II. PROBLEM FORMULATION

Consider a system in which a quantized version of obser-
vation is used to estimate an underlying parameter . Let

represent the p.d.f. of the observation, and denote
the quantizer. Instead of using observation , a noise modified
version of the observation, , can be used as in Fig. 1 in
order to improve the estimation accuracy of the system, where
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the additive noise is independent of the observation . The
aim is to obtain the p.d.f. of , denoted by , that maximizes
the estimation accuracy of the system in Fig. 1. It is noted that
this noise enhanced parameter estimation problem can also be
regarded as a dynamic bias control problem as in [9], when
represents the control input for the quantizer bias.

Suppose that quantizer is an -level quantizer that gen-
erates the quantized observation vector based on the noise
modified input observation as follows:

(1)

where , ,
, and the quantizer levels are determined by

thresholds . Specifically, the relation between
the input and the output of the quantizer is described, for

, as

(2)

for , where and are
used for the simplicity of the expressions.

Let represent the probability mass function (p.m.f.)
of the quantizer output for a given value of . From (2), it can
be obtained as

(3)

for , where represents the th
component of .

The additive noise component in Fig. 1 is optimized ac-
cording to the CRLB in this study; that is, the optimal noise
p.d.f. that minimizes the CRLB is sought for. The CRLB on the
MSE of unbiased estimators of is stated as

(4)

where , is defined as the Fisher
information [13], and is as in (3). Since the CRLB im-
poses a lower limit on the MSE of an unbiased estimator and
since some estimators, such as the maximum likelihood esti-
mator, can (asymptotically) achieve the CRLB under certain
conditions [13], the aim in this study is to obtain the optimal
p.d.f. of the additive noise that minimizes the CRLB specified
by (4).

As the CRLB is the inverse of the Fisher information, the
optimal additive noise p.d.f. can be formulated, from (4), as the
solution of the following optimization problem:

(5)

Since is equal to with probability as defined in (3),
the problem in (5) can be expressed as

(6)

As a special case of the generic problem formulation in (6),
when both and consist of independent components, it can
be shown that the components of the optimal additive noise can
be calculated separately; i.e.,

(7)

for , where represents the marginal p.d.f. of
the th component of the additive noise, and denotes
the probability that is equal to for .
In addition, if are independent and identically dis-
tributed (i.i.d.); that is, if for ,
the optimization problems in (7) become identical.

III. STATISTICAL CHARACTERIZATION OF
OPTIMAL ADDITIVE NOISE

In order to investigate the statistical properties of the optimal
additive noise in (6), we first introduce

(8)

(9)

It is noted from (3) that , , and that
. Based on the definitions in (8) and (9), the

p.m.f. in (3) and its derivative with respect to can be expressed
as and .
Then, the optimization problem in (6) becomes

(10)

In order to obtain the solution of (10), the following lemma is
presented first.

Lemma 1: For the real-valued functions defined in (8) and
(9),

(11)

is satisfied for all and all possible p.d.f.s of .
Proof: 1Consider a function of two variables de-

fined as , where . After
some manipulation, the Hessian of can be shown
to be positive semidefinite; hence, is convex, for

. Therefore, Jensen’s inequality implies that
, for , which, upon

the definition of and , becomes
for all

, and , since , , by definition (cf.
(8)). As this inequality is valid for all ’s, we obtain

(12)

for all and . Finally, as the expression on the right-hand-
side of (12) is never larger than ,
the result in the lemma is obtained.

Lemma 1 states that for each possible noise p.d.f. , the
Fisher information can never

be larger than the maximum of over
all possible noise values, . In other words, Lemma 1 states

1The authors thank the reviewer who suggested the approach in the proof.



BALKAN AND GEZICI: CRLB BASED OPTIMAL NOISE 479

that randomization among different noise values cannot improve
(increase) the objective function in (10). This result leads to the
following proposition.

Proposition 1: The optimal noise p.d.f. in (10) can
be expressed as , where

.

Proof: Since the result in Lemma 1 holds for any ,
the following inequality can be obtained:

(13)
Therefore, the maximum value of the objective function in (10)
can never be larger than the expression on the right-hand-side
of (13). However, this upper bound is achievable for

, where is defined as in the proposition. Hence, the
optimal additive noise can be expressed as in the proposition.

Proposition 1 states that for any additive noise that has a p.d.f.
with multiple mass points, there always exists a corresponding
constant “noise” level that provides an equal or smaller CRLB.
In addition, it is noted from Lemma 1 and Proposition 1 that a
constant additive “noise” component is optimal irrespective of
the number of quantization levels and the dimension of the
observation vector . In addition, no assumption is imposed
on the p.d.f. of the original observation, .

IV. OPTIMAL ADDITIVE NOISE IN THE PRESENCE
OF PRIOR INFORMATION

In Section III, the optimal additive noise is calculated for a
given value of . Although the value of is unknown in prac-
tice, the theoretical analysis in the previous section is useful in
two aspects. First, it provides theoretical performance limits for
unbiased estimators that perform parameter estimation based
on quantized observations. Second, the theoretical results in the
previous section form a basis for more practical results, and the
ideas can be extended to the cases of unknown parameters. In the
following, it is assumed that the exact value of is unknown, but
its p.d.f., denoted by , is known a priori. Then, it is shown
that the results in Lemma 1 and Proposition 1 can be extended
to characterize the optimal additive noise.

In the presence of prior p.d.f. for the unknown parameter
, the Bayesian CRLB (BCRLB), also known as the posterior

CRLB [14], imposes a lower bound on the MSE of any estimator
as [13]

(14)

where and represent the information obtained from the
data (observations) and from the prior knowledge, respectively,
and are given by

(15)
It is important to note that the expectation in (14) is over both
and , whereas that in (4) is over only.

Since depends only on the prior p.d.f., it is independent of
the additive noise component. Therefore, the optimal additive
noise p.d.f. is defined to be the one that maximizes . Then,
similar to (5) and (6), the optimal additive noise p.d.f. can be
formulated as

(16)
In other words, the aim now becomes maximizing the average
of Fisher information [cf. (4)–(6)] for different parameter
values. Since and

as defined in Section III, (16) can also be expressed
as

(17)

Then, the following proposition presents the p.d.f. of the optimal
additive noise.

Proposition 2: The optimal noise p.d.f. in (17) can be ex-
pressed as , where

(18)

Proof: Consider the inequality in (12), which
is valid for all and . Since it holds for
all values, the following inequality can be ob-
tained:

for all . There-
fore, the maximum value of the objective function in (17) can
be bounded from above by

(19)

Since the upper bound in (19) is always smaller than or equal
to , the inequality

can be obtained, where is as
defined in (18). Since the upper bound in this inequality can be
achieved for , the result in the proposition
is obtained.

Proposition 2 states that among all possible p.d.f.s for the
additive noise components, a p.d.f. with a single mass point
(that is, a constant “noise” component) minimizes the BCRLB.
Therefore, adding the optimal noise to the observation is equiv-
alent to shifting the threshold levels of the quantizer, which is a
simple operation since no randomization among different noise
values is needed.

V. NUMERICAL RESULTS AND CONCLUSIONS

In order to provide an example of the results in the pre-
vious sections, consider a scalar observation in Fig. 1
with a Gaussian mixture p.d.f. given by

, where
. Then, in (8) can

be expressed as ,
for , where the cumulative distribution
function (c.d.f.) of for a given value of is calculated as

, with
denoting the -function. Also,

in (9) can be calculated as the derivative of
with respect to . In addition, the quantizer in (2) is modeled
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Fig. 2. (Top) CRLB versus additive “noise” � for � � � and � � �. (Bottom)
BCRLB versus � when � is Gaussian distributed with unit mean and variance.

Fig. 3. CRLB versus � for various values of additive “noise” �.

as a 4-level quantizer (i.e., ) specified by thresholds
, and .

First, optimal additive noise is investigated for given values
of . Since Proposition 1 states that optimal additive noise in
Fig. 1 can be represented by a constant, the top plot in Fig. 2
investigates the CRLB versus constant “noise” levels for
and , where is used. Specifically, the inverse of the
objective function in (10) is plotted against the additive “noise”
level, . It is observed for that the optimal additive “noise”
value is equal to zero, which means that the additive “noise”
cannot reduce the CRLB of the system in that case. However, for

, the minimum CRLB is achieved for , which
shows that additive “noise” can result in a smaller CRLB. In
addition, Fig. 3 plots the CRLB versus for various values of
the additive “noise,” . It is observed that the minimum CRLBs
can be achieved by different values over different ranges of
parameter .

Next, for the problem setting described above, it is assumed
that the prior p.d.f. of is specified as

, where . From (15), it can
be shown that . In Fig. 2, the BCRLB is plotted
versus , where the BCRLB is calculated as , with

and denoting the value of the objective function in
(18) for various values of . It is observed from the figure that
the minimum BCRLB is achieved at . In addition,
since there exists prior information in this scenario, the theoret-
ical limits are lower than those in the previous scenario in which
no prior information on exists.

TABLE I
UNIFORM DITHERING VERSUS OPTIMAL ADDITIVE “NOISE”

Finally, for the scenarios in Fig. 2, the lower bounds achieved
by optimal additive noise are compared to those obtained
via uniform dithering, which employs uniform additive noise
between and . The results in Table I reveal that uniform
dithering can result in larger BCRLB values. For a given , the
CRLB can decrease or increase with , as observed for
and , respectively. In all cases, uniform dithering can
never achieve smaller lower bounds than the optimal additive
noise in accordance with the theoretical results.

Since Propositions 1 and 2 state that optimal additive “noise”
can be represented by a constant signal level, it is concluded
that the CRLB (BCRLB) is minimized by shifting the original
observation, which corresponds to shifting the thresholds of the
quantizer by a constant value (cf. (2)). That is, among all pos-
sible p.d.f.s for the additive noise in Fig. 1, the ones with a single
mass point, i.e., constant “noise” levels, can be used to achieve
the minimum CRLB (BCRLB).
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