23 research outputs found
A Study of Antenna System for High Order MIMO Device
Three types of compact MIMO (Multiple-Input Multiple-Output) antenna systems with four and six elements for mobile handsets are studied in this paper. The MIMO antenna system is built on a FR4 substrate of the dimensions 136âmm Ă 68.8âmm Ă 1âmm. The antenna element is a folded planar inverted-F antenna with added resonating branches wound on a small dielectric cube of the dimensions 10âmm Ă 10âmm Ă 5âmm, which is the smallest volume so far reported covering the frequency bands 1880âMHzâ1920âMHz and 2300âMHzâ2620âMHz for GSM1900, LTE2300, 2.4-GHz WLAN, and LTE2500. The effects of element numbers and configurations on the system performance are investigated. More than 10âdB isolations have been achieved by properly designing the antenna elements through the use of the pattern diversity without using decoupling circuits. The envelope correlation coefficients among the elements, the mean effective gains, the efficiencies, and the multiplexing efficiencies of the elements are also discussed
Visible/near-infrared hyperspectral imaging combined with machine learning for identification of ten Dalbergia species
IntroductionThis study addresses the urgent need for non-destructive identification of commercially valuable Dalbergia species, which are threatened by illegal logging. Effective identification methods are crucial for ecological conservation, biodiversity preservation, and the regulation of the timber trade.MethodsWe integrate Visible/Near-Infrared (Vis/NIR) Hyperspectral Imaging (HSI) with advanced machine learning techniques to enhance the precision and efficiency of wood species identification. Our methodology employs various modeling approaches, including Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN). These models analyze spectral data across Vis (383â982 nm), NIR (982â2386 nm), and full spectral ranges (383 nm to 2386 nm). We also assess the impact of preprocessing techniques such as Standard Normal Variate (SNV), Savitzky-Golay (SG) smoothing, normalization, and Multiplicative Scatter Correction (MSC) on model performance.ResultsWith optimal preprocessing, both SVM and CNN models achieve 100% accuracy across NIR and full spectral ranges. The selection of an appropriate wavelength range is critical; utilizing the full spectrum captures a broader array of the wood's chemical and physical properties, significantly enhancing model accuracy and predictive power.DiscussionThese findings underscore the effectiveness of Vis/NIR HSI in wood species identification. They also highlight the importance of precise wavelength selection and preprocessing techniques to maximize both accuracy and cost-efficiency. This research contributes substantially to ecological conservation and the regulation of the timber trade by providing a reliable, non-destructive method for identifying threatened wood species
Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).
PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of
Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is
funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Unionâs Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early
Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the
Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South
Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research
Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)
The Importance of ArbNet Accreditation Program for Arboreta
Arboreta are botanical gardens dedicated to the growth, protection, and continuing research on woody plant species. The goal is to provide greenery to the community while promoting plant conservation and public education. Currently, no international network exists between arboreta to mitigate struggles and facilitate collaboration. The objective of this paper describes the obstacles to arboreta success and whether the international ArbNet Accreditation Program can help institutions reach goals and improve collection quality. Benefits of accreditation are hypothesized to be worth the efforts required to obtain membership to program. This paper can potentially act as a guide for institutions interested in joining the network while clarifying the potential returns they would receive.
ArbNet utilizes industry-accepted standards as the criteria for four achievement levels. The program has no membership fee and accepts institutions of all sizes and backgrounds, including non-traditional arboreta. The inability for society to recognize the importance of woody species threatens arboreta management by limiting their ability to secure funds, which in turn affects research advancements and public attraction. ArbNet acts as a confirmation for the collection quality and management expertise that the arboreta can utilize as promotions to gain recognition and public interests. Such result is beneficial for smaller and non-arboreta institutions that may not have the connections to develop their collection or expertise to gain public attention. The inconsistency in arboreta quality assessment presents difficulties to evaluate the capacity of an arboretum to form collaborations. ArbNet simplifies this evaluation by presenting set standards and as a result strengthens trust and increases collaborative opportunities for arboreta. Formation of collaborations can secure species procurement, which improves the conservation valuation of the collection. With the assembly of resources, knowledge, and expertise, research advancements can hopefully progress to better mitigate against climate change and invasive species management. It was found that the benefits of the ArbNet Program for research collaboration, public engagement, and arboreta quality improvement outweighs the effort required to obtain accreditation, supporting the hypothesis
Design of an effective energy receiving adapter for microwave wireless power transmission application
In this paper, we demonstrate the viability of an energy receiving adapter in a 8Ă8 array form with high power reception efficiency with the resonator of artificial electromagnetic absorber being used as the element. Unlike the conventional reported rectifying antenna resonators, both the size of the element and the separations between the elements are electrically small in our design. The energy collecting process is explained with an equivalent circuit model, and a RF combining network is designed to combine the captured AC power from each element to one main terminal for AC-to-DC conversion. The energy receiving adapter yields a total reception efficiency of 67% (including the wave capture efficiency of 86% and the AC-to-DC conversion efficiency of 78%), which is quite promising for microwave wireless power transmission
Recommended from our members
Navigating the Decision to Disclose Mental Illness in the Workplace: The Role of Leader Motivating Language and Perceived Organizational Support
Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration
Abstract Background Schwann cells (SCs) respond to nerve injury by transforming into the repair-related cell phenotype, which can provide the essential signals and spatial cues to promote axonal regeneration and induce target reinnervation. Endothelial cells (ECs) contribute to intraneural angiogenesis contributing to creating a permissive microenvironment. The coordination between ECs and SCs within injury sites is crucial in the regeneration process, however, it still unclear. As the intercellular vital information mediators in the nervous system, exosomes have been proposed to take a significant role in regulating regeneration. Thus, the main purpose of this study is to determine the facilitative effect of ECs-derived exosomes on SCs and to seek the underlying mechanism. Results In the present study, we collected exosomes from media of ECs. We demonstrated that exosomes derived from ECs possessed the favorable neuronal affinity both in vitro and in vivo. Further research indicated that EC-exosomes (EC-EXO) could boost and maintain repair-related phenotypes of SCs, thereby enhancing axonal regeneration, myelination of regenerated axons and neurologically functional recovery of the injured nerve. MiRNA sequencing in EXO-treated SCs and control SCs indicated that EC-EXO significantly up-regulated expression of miR199-5p. Furthermore, this study demonstrated that EC-EXO drove the conversion of SC phenotypes in a PI3K/AKT/PTEN-dependent manner. Conclusion In conclusion, our research indicates that the internalization of EC-EXO in SCs can promote nerve regeneration by boosting and maintaining the repair-related phenotypes of SCs. And the mechanism may be relevant to the up-regulated expression of miR199-5p and activation of PI3K/AKT/PTEN signaling pathway. Graphical Abstrac