4,034 research outputs found

    Fedosov supermanifolds: II. Normal coordinates

    Full text link
    The study of recently introduced Fedosov supermanifolds is continued. Using normal coordinates, properties of even and odd symplectic supermanifolds endowed with a symmetric connection respecting given sympletic structure are studied.Comment: 12 pages, Late

    Boson-fermion mapping of collective fermion-pair algebras

    Get PDF
    We construct finite Dyson boson-fermion mappings of general collective algebras extended by single-fermion operators. A key element in the construction is the implementation of a similarity transformation which transforms boson-fermion images obtained directly from the supercoherent state method. In addition to the general construction, we give detailed applications to SO(2N), SU(l+1), SO(5), and SO(8) algebras.Comment: 22 pages, latex, no figure

    SDG fermion-pair algebraic SO(12) and Sp(10) models and their boson realizations

    Full text link
    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained, also in situations where there is no underlying SU(3) symmetry.Comment: 25 LaTeX pages, 4 uuencoded postscript figures included, Preprint IFT/8/94 & STPHY-TH/94-

    Quantum properties of general gauge theories with composite and external fields

    Get PDF
    The generating functionals of Green's functions with composite and external fields are considered in the framework of BV and BLT quantization methods for general gauge theories. The corresponding Ward identities are derived and the gauge dependence is investigatedComment: 24 pages, LATEX, slightly changed to clarify the essential new aspect concerning composite fields depending on external ones; added formulas showing lack of (generalized) nilpotence of operators appearing in the Ward identitie

    Analysis of the Strong Coupling Limit of the Richardson Hamiltonian using the Dyson Mapping

    Full text link
    The Richardson Hamiltonian describes superconducting correlations in a metallic nanograin. We do a perturbative analysis of this and related Hamiltonians, around the strong pairing limit, without having to invoke Bethe Ansatz solvability. Rather we make use of a boson expansion method known as the Dyson mapping. Thus we uncover a selection rule that facilitates both time-independent and time-dependent perturbation expansions. In principle the model we analise is realised in a very small metalic grain of a very regular shape. The results we obtain point to subtleties sometimes neglected when thinking of the superconducting state as a Bose-Einstein condensate. An appendix contains a general presentation of time-independent perturbation theory for operators with degenerate spectra, with recursive formulas for corrections of arbitrarily high orders.Comment: New final version accepted for publication in PRB. 17 two-column pages, no figure

    Boson-fermion mappings for odd systems from supercoherent states

    Get PDF
    We extend the formalism whereby boson mappings can be derived from generalized coherent states to boson-fermion mappings for systems with an odd number of fermions. This is accomplished by constructing supercoherent states in terms of both complex and Grassmann variables. In addition to a known mapping for the full so(2NN+1) algebra, we also uncover some other formal mappings, together with mappings relevant to collective subspaces.Comment: 40 pages, REVTE

    Dynamical stabilization of classical multi electron targets against autoionization

    Get PDF
    We demonstrate that a recently published quasiclassical M\oller type approach [Geyer and Rost 2002, J. Phys. B 35 1479] can be used to overcome the problem of autoionization, which arises in classical trajectory calculations for many electron targets. In this method the target is stabilized dynamically by a backward--forward propagation scheme. We illustrate this refocusing and present total cross sections for single and double ionization of helium by electron impact.Comment: LaTeX, 6 pages, 2 figures; submitted to J. Phys.
    • …
    corecore