188 research outputs found

    FISH as an effective diagnostic tool for the management of challenging melanocytic lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accuracy of melanoma diagnosis continues to challenge the pathology community, even today with sophisticated histopathologic techniques. Melanocytic lesions exhibit significant morphological heterogeneity. While the majority of biopsies can be classified as benign (nevus) or malignant (melanoma) using well-established histopathologic criteria, there exists a cohort for which the prediction of clinical behaviour and invasive or metastatic potential is difficult if not impossible to ascertain on the basis of morphological features alone. Multiple studies have shown that there is significant disagreement between pathologists and even expert dermatopathologists in the diagnosis of this subgroup of difficult melanocytic lesions.</p> <p>Methods</p> <p>A four probe FISH assay was utilized to analyse a cohort of 500 samples including 157 nevus, 176 dysplastic nevus and 167 melanoma specimens.</p> <p>Results</p> <p>Review of the lesions determined the assay identified genetic abnormalities in a total of 83.8% of melanomas, and 1.9% of nevus without atypia, while genetic abnormalities were identified in 6.3%, 6.7%, and 10.3% of nevus identified with mild, moderate and severe atypia, respectively.</p> <p>Conclusions</p> <p>Based on this study, inheritable genetic damage/instability identified by FISH testing is a hallmark of a progressive malignant process, and a valuable diagnostic tool for the identification of high risk lesions.</p

    Transcriptomic landscape of breast cancers through mRNA sequencing

    Get PDF
    Breast cancer is a heterogeneous disease with a poorly defined genetic landscape, which poses a major challenge in diagnosis and treatment. By massively parallel mRNA sequencing, we obtained 1.2 billion reads from 17 individual human tissues belonging to TNBC, Non-TNBC, and HER2-positive breast cancers and defined their comprehensive digital transcriptome for the first time. Surprisingly, we identified a high number of novel and unannotated transcripts, revealing the global breast cancer transcriptomic adaptations. Comparative transcriptomic analyses elucidated differentially expressed transcripts between the three breast cancer groups, identifying several new modulators of breast cancer. Our study also identified common transcriptional regulatory elements, such as highly abundant primary transcripts, including osteonectin, RACK1, calnexin, calreticulin, FTL, and B2M, and “genomic hotspots” enriched in primary transcripts between the three groups. Thus, our study opens previously unexplored niches that could enable a better understanding of the disease and the development of potential intervention strategies

    Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma

    Get PDF
    Oesophageal adenocarcinoma is an aggressive malignancy with propensity for early lymphatic and haematogenous dissemination. Since conventional TNM staging does not provide accurate prognostic information, novel molecular prognostic markers and potential therapeutic targets are subject of intense research. The aim of the present study was to study the prognostic significance of Met, the hepatic growth factor (HGF) receptor and a possible target for therapy in comparison to cyclooxygenase-2 (COX-2). Tumour sections from 145 consecutive patients undergoing intentionally curative surgery for oesophageal adenocarcinoma were immunohistochemically analysed for Met and COX-2 expression. Clinicopathological data were prospectively collected for all patients. Patients with high Met expression had significantly reduced overall and disease-specific 5-year survival rates (P⩽0.001 and P⩽0.001, respectively) and were more likely to develop distant metastases (P=0.002) and local recurrences (P=0.004) compared to patients with low Met expression. High COX-2 expression tended to be correlated with poor long-term survival but this did not reach statistical significance. Expression of Met was recognised as a significant and independent prognostic factor by stage-specific analysis and multivariate analysis (relative risk=2.3; 95% CI=1.3–4.1). These findings support the importance of Met in oesophageal adenocarcinoma and support the concept of Met tyrosine kinase inhibition as (neo-) adjuvant treatment

    Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    Get PDF
    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks.National Institutes of Health (U.S.) (NIH Pioneer Award DP1 OD003646)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 2736448)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 6895867

    Next-generation sequencing

    Get PDF
    Next-generation sequencing (also known as massively parallel sequencing) technologies are revolutionising our ability to characterise cancers at the genomic, transcriptomic and epigenetic levels. Cataloguing all mutations, copy number aberrations and somatic rearrangements in an entire cancer genome at base pair resolution can now be performed in a matter of weeks. Furthermore, massively parallel sequencing can be used as a means for unbiased transcriptomic analysis of mRNAs, small RNAs and noncoding RNAs, genome-wide methylation assays and high-throughput chromatin immunoprecipitation assays. Here, I discuss the potential impact of this technology on breast cancer research and the challenges that come with this technological breakthrough

    Origin and differentiation of breast nipple syringoma

    Get PDF
    Similarities in morphology and in glandular and squamous differentiation patterns amongst syringomas of the breast nipple and of the skin suggest a common nature, but the origin of nipple syringoma remains undefined. Using triple immunofluorescence analysis, we found that cells immunopositive for basal keratins K5 and 14 undergo differentiation into glandular and squamous cell lineages. Both tumour types expressed K10, indicative of squamous lineage, but there were specific differences in their glandular lineage. In contrast to the breast nipple syringoma, which expressed glandular keratins K8/18/19, syringoma of the skin only expressed the glandular keratin K19. Therefore, syringomas of the breast nipple and of the skin resemble glandular lineages of the breast nipple duct or eccrine duct epithelium, respectively. From these results we conclude that K5/14-positive cells of the breast nipple ducts are the putative cells of origin for syringomas of the nipple, which highlights the organotypic glandular differentiation potential

    Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept

    Get PDF
    There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types

    Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes.

    Get PDF
    BACKGROUND: Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS) of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS: Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg) of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS: Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION: This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples
    corecore