1,508 research outputs found
A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction
The optimal power performance of a first principle quantum heat engine model
shows friction-like phenomena when the internal fluid Hamiltonian does not
commute with the external control field. The model is based on interacting
two-level-systems where the external magnetic field serves as a control
variable.Comment: 4 pages 3 figure
Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner
By using a laser and maser in tandem, it is possible to obtain laser action
in the hot exhaust gases involved in heat engine operation. Such a "quantum
afterburner" involves the internal quantum states of working gas atoms or
molecules as well as the techniques of cavity quantum electrodynamics and is
therefore in the domain of quantum thermodynamics. As an example, it is shown
that Otto cycle engine performance can be improved beyond that of the "ideal"
Otto heat engine.Comment: 5 pages, 3 figure
A quantum-mechanical Maxwell's demon
A Maxwell's demon is a device that gets information and trades it in for
thermodynamic advantage, in apparent (but not actual) contradiction to the
second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon
exhibit features that classical versions do not: in particular, a device that
gets information about a quantum system disturbs it in the process. In
addition, the information produced by quantum measurement acts as an additional
source of thermodynamic inefficiency. This paper investigates the properties of
quantum-mechanical Maxwell's demons, and proposes experimentally realizable
models of such devices.Comment: 13 pages, Te
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
Reply to Comment on "Completely positive quantum dissipation"
This is the reply to a Comment by R. F. O'Connell (Phys. Rev. Lett. 87 (2001)
028901) on a paper written by the author (B. Vacchini, ``Completely positive
quantum dissipation'', Phys.Rev.Lett. 84 (2000) 1374, arXiv:quant-ph/0002094).Comment: 2 pages, revtex, no figure
L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass
We investigate the distribution of single molecule line shape cumulants,
, in low temperature glasses based on the sudden jump,
standard tunneling model. We find that the cumulants are described by L\'evy
stable laws, thus generalized central limit theorem is applicable for this
problem.Comment: 5 pages, 3 figure
Fundamental limitations for quantum and nano thermodynamics
The relationship between thermodynamics and statistical physics is valid in
the thermodynamic limit - when the number of particles becomes very large.
Here, we study thermodynamics in the opposite regime - at both the nano scale,
and when quantum effects become important. Applying results from quantum
information theory we construct a theory of thermodynamics in these limits. We
derive general criteria for thermodynamical state transformations, and as
special cases, find two free energies: one that quantifies the
deterministically extractable work from a small system in contact with a heat
bath, and the other that quantifies the reverse process. We find that there are
fundamental limitations on work extraction from nonequilibrium states, owing to
finite size effects and quantum coherences. This implies that thermodynamical
transitions are generically irreversible at this scale. As one application of
these methods, we analyse the efficiency of small heat engines and find that
they are irreversible during the adiabatic stages of the cycle.Comment: Final, published versio
Wake up, wake up! It's me! It's my life! patient narratives on person-centeredness in the integrated care context: a qualitative study
Person-centered care emphasizes a holistic, humanistic approach that puts patients first, at the center of medical care. Person-centeredness is also considered a core element of integrated care. Yet typologies of integrated care mainly describe how patients fit within integrated services, rather than how services fit into the patient's world. Patient-centeredness has been commonly defined through physician's behaviors aimed at delivering patient-centered care. Yet, it is unclear how 'person-centeredness' is realized in integrated care through the patient voice. We aimed to explore patient narratives of person-centeredness in the integrated care context
A dynamical model reveals gene co-localizations in nucleus
Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes
Operational approach to open dynamics and quantifying initial correlations
A central aim of physics is to describe the dynamics of physical systems.
Schrodinger's equation does this for isolated quantum systems. Describing the
time evolution of a quantum system that interacts with its environment, in its
most general form, has proved to be difficult because the dynamics is dependent
on the state of the environment and the correlations with it. For discrete
processes, such as quantum gates or chemical reactions, quantum process
tomography provides the complete description of the dynamics, provided that the
initial states of the system and the environment are independent of each other.
However, many physical systems are correlated with the environment at the
beginning of the experiment. Here, we give a prescription of quantum process
tomography that yields the complete description of the dynamics of the system
even when the initial correlations are present. Surprisingly, our method also
gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2
figure
- …
