1,508 research outputs found

    A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction

    Get PDF
    The optimal power performance of a first principle quantum heat engine model shows friction-like phenomena when the internal fluid Hamiltonian does not commute with the external control field. The model is based on interacting two-level-systems where the external magnetic field serves as a control variable.Comment: 4 pages 3 figure

    Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner

    Full text link
    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases involved in heat engine operation. Such a "quantum afterburner" involves the internal quantum states of working gas atoms or molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. As an example, it is shown that Otto cycle engine performance can be improved beyond that of the "ideal" Otto heat engine.Comment: 5 pages, 3 figure

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Reply to Comment on "Completely positive quantum dissipation"

    Full text link
    This is the reply to a Comment by R. F. O'Connell (Phys. Rev. Lett. 87 (2001) 028901) on a paper written by the author (B. Vacchini, ``Completely positive quantum dissipation'', Phys.Rev.Lett. 84 (2000) 1374, arXiv:quant-ph/0002094).Comment: 2 pages, revtex, no figure

    L\'evy Distribution of Single Molecule Line Shape Cumulants in Low Temperature Glass

    Full text link
    We investigate the distribution of single molecule line shape cumulants, κ1,κ2,...\kappa_1,\kappa_2,..., in low temperature glasses based on the sudden jump, standard tunneling model. We find that the cumulants are described by L\'evy stable laws, thus generalized central limit theorem is applicable for this problem.Comment: 5 pages, 3 figure

    Fundamental limitations for quantum and nano thermodynamics

    Get PDF
    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit - when the number of particles becomes very large. Here, we study thermodynamics in the opposite regime - at both the nano scale, and when quantum effects become important. Applying results from quantum information theory we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transformations, and as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from nonequilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.Comment: Final, published versio

    Wake up, wake up! It's me! It's my life! patient narratives on person-centeredness in the integrated care context: a qualitative study

    Get PDF
    Person-centered care emphasizes a holistic, humanistic approach that puts patients first, at the center of medical care. Person-centeredness is also considered a core element of integrated care. Yet typologies of integrated care mainly describe how patients fit within integrated services, rather than how services fit into the patient's world. Patient-centeredness has been commonly defined through physician's behaviors aimed at delivering patient-centered care. Yet, it is unclear how 'person-centeredness' is realized in integrated care through the patient voice. We aimed to explore patient narratives of person-centeredness in the integrated care context

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    Operational approach to open dynamics and quantifying initial correlations

    Get PDF
    A central aim of physics is to describe the dynamics of physical systems. Schrodinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynamics is dependent on the state of the environment and the correlations with it. For discrete processes, such as quantum gates or chemical reactions, quantum process tomography provides the complete description of the dynamics, provided that the initial states of the system and the environment are independent of each other. However, many physical systems are correlated with the environment at the beginning of the experiment. Here, we give a prescription of quantum process tomography that yields the complete description of the dynamics of the system even when the initial correlations are present. Surprisingly, our method also gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2 figure
    corecore