18 research outputs found

    Crystal structure of tetraholmium nickel tetradecaboride, Ho4NiB14

    No full text
    B14Ho4Ni, tetragonal, P4/mnc (No. 128), a = 7.2097(8) Å, c = 7.4587(9) Å, V = 387.7 Å3, Z = 2, Rgt(F) = 0.049, wRref(F2) = 0.087, T = 300 K

    Refinement of the crystal structure of diholmium trinickel hexaboride, Ho2Ni3B6

    Get PDF
    B6Ho2Ni3, orthorhombic, Cmmm (No. 65), a = 7.6865(9) Å, b = 8.6679(9) Å, c = 3.4742(4) Å, V = 231.5 Å3, Z = 2, Rgt(F) = 0.021, wRref(F2) = 0.048, T= 300 K

    Refinement of the crystal structure of holmium tetranickel boride, HoNi4B

    Get PDF
    BHoNi4, hexagonal, P6/mmm (No. 191), a = 4.9696(4) Å, c = 6.9419(5) Å, V= 148.5 Å3, Z= 2, ρm = 9.13(1) g·cm-3, R(P) = 0.072, wR(P) = 0.099, R(I) = 0.065, T= 300 K

    Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy

    No full text
    Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM

    Progress in nitrogen deposition monitoring and modelling

    No full text
    The chapter reviews progress in monitoring and modelling of atmospheric nitrogen (N) deposition at regional and global scales. The Working Group expressed confidence in the inorganic N wet deposition estimates in U.S., eastern Canada, Europe and parts of East Asia. But, long-term wet or dry N deposition information in large parts of Asia, South America, parts of Africa, Australia/Oceania, and oceans and coastal areas is lacking. Presently, robust estimates are only available for inorganic N as existing monitoring generally does not measure the complete suite of N species, impeding the closing of the atmospheric N budget. The most important species not routinely measured are nitrogen dioxide (NO2), ammonia (NH3), organic N and nitric acid (HNO3). Uncertainty is much higher in dry deposition than in wet deposition estimates. Inferential modelling (combining air concentrations with exchange rates) and direct flux measurements are good tools to estimate dry deposition; however, they are not widely applied. There is a lack of appropriate parameterizations for different land uses and compounds for input into inferential models. There is also a lack of direct dry deposition flux measurements to test inferential models and atmospheric model estimates
    corecore