© by Oldenbourg Wissenschaftsverlag, München

Refinement of the crystal structure of holmium nickel borocarbide, HoNiBC

S. Geupel*, I, I, G. Zahn^I, P. Paufler^I and G. Graw^{II}

¹ Technische Universität Dresden, Institut für Kristallographie und Festkörperphysik, D-01062 Dresden, Germany

¹¹ Institut für Festkörper- und Werkstofforschung Dresden, Postfach 270016, D-01171 Dresden, Germany

Received May 8, 2000, CSD-No. 409498

Abstract

BCHoNi, tetragonal, P4/nmm (No. 129), a = 3.5621(5) Å, c = 7.556(2) Å, V = 95.9 Å³, Z = 2, $R_{gt}(F) = 0.030$, $wR_{ref}(F^2) = 0.076$, T = 300 K.

Source of material

A coarse-grained sample with nominal composition HoNiBC was prepared from holmium pieces and powders of nickel, boron and carbon, respectively. A stoichiometric mixture of the high-purity elements was pressed to pellets, which have been arc-melted under argon atmosphere on a water-cooled copper heart. Melting of the buttons has been repeated three times in order to improve the sample homogeneity. A special annealing treatment (duration 75 h, temperature up to 1733 K) was performed in a resistance furnace under argon atmosphere. The composition of the annealed sample was determined with electron probe microanalysis applying the WDX mode. A single grain for single-crystal diffractometry was extracted from the polycrystalline aggregate.

Experimental details

Accurate lattice parameters of HoNiBC were measured at temperatures between 300 K and 100 K using a STOE STADI4 four-circle diffractometer equipped with a CRYOSTREAM cooling system (Oxford Cryosystems).

Discussion

The title compound is isotypic with LuNiBC [1]. Along the caxis, inverse PbO-type Ni₂B₂ layers are separated by double NaCl-type HoC layers, in contrast to the alternate stacking of Ni₂B₂ and HoC layers in the superconducting quaternary phase HoNi₂B₂C. This structural modification changes the space group from I4/mmm - edba (HoNi2B2C) to P4/nmm - c3a (HoNiBC). The only known structure refinement on HoNiBC has been performed using X-ray powder diffraction data from a sample containing unidentified impurity phases [2]. Here we present the first structure refinement using single-crystal diffraction data. Atomic coordinates correspond to the standardized form according to STRUCTURE TIDY [4], shifting the origin by [0 0 1/2]. Compared with LuNiBC, a replacement of the smaller Lu atom by the larger Ho atom shifts the lattice parameters in an opposite manner: the a axis expands, whereas the c axis contracts. Each Ho atom is in a square-planar coordination by four C atoms at 2.520 Å and vice versa. The Ni atom is tetrahedrally surrounded by four B atoms, with B-Ni-B bond angles of 106.3° and 116.0° and a Ni-B distance of 2.10 Å. The refinement of site occupancies results in the composition HoNi0.97(1)BC. The analysis of the U_{ii} reveals a preferred displacement of Ho and Ni atoms in the *a-b* plane. As distinct from HoNi2B2C [3], the linear thermal expansion at temperatures between 300 K and 100 K indicates a nearly isotropic behaviour: $\alpha_a = \alpha_c = 1.2 \times 10^{-5} \text{ K}^{-1}$.

Table 1. Data collection and handling.

Crystal:	metallic lustre, block,
Wavelength:	$M_{\alpha} K_{\alpha}$ radiation (0.71073 Å)
ц:	502.52 cm ⁻¹
Diffractometer, scan mode:	STOE STADI4, ω/θ
20 _{max} :	74.74°
N(hkl)measured, N(hkl)unique:	1136, 185
Criterion for Iobs, N(hkl)gt:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 156$
N(param)refined:	12
Programs:	STRUCTURE TIDY [4], SHELX-97 [5],
	SCHAKAL92 [6]

^{*} Correspondence author (e-mail: sandra.geupel@uni-bayreuth.de) ¹ current address: Universität Bayreuth,

Lehrstuhl für Kristallographie, D-95440 Bayreuth, Germany

Atom Site х у z $U_{\rm iso}$ В 1/4 1/4 0.147(2) 0.007(2) 2cС 2c1/4 1/4 0.345(2) 0.006(2)

Table 2. Atomic coordinates and displacement parameters (in $Å^2$), origin at (2/m).

Table 3. Atomic coordinates and displacement parameters (in $Å^2$), origin at (2/m).

Atom	Site	Occ.	x	у	z	<i>U</i> 11	U ₂₂	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Ho	2c	0.97(1)	1/4	1/4	0.6660(1)	0.0064(3)	U11	0.0032(3)	0	0	0
Ni	2a		3/4	1/4 -	0	0.0068(6)	U11	0.0025(7)	0	0	0

Acknowledgment. Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

 Geupel, S.; Zahn, G.; Paufler, P.; Graw, G.: Strukturuntersuchungen an Phasen des Systems Ho-Ni-B-C. Z. Kristallogr. Suppl. 17 (2000) 161.

References

- Siegrist, T.; Zandbergen, H. W.; Cava, R. J.; Krajewski, J. J.; Peck Jr., W. F.: The crystal structure of superconducting LuNi₂B₂C and the related phase LuNiBC. Nature 367 (1994) 254-256.
- El Massalami, M.; Baggio-Saitovich, E.; Sulpice, A.: The magnetic properties of HoNiBC: absence of superconductivity and helical ground-state. J. Alloys. Compd. 228 (1995) 49-53.
- Phasen des Systems Ho-Ni-B-C. Z. Kristallogr. Suppl. 17 (2000) 161.
 Gelato, L. M.; Parthé, E.: STRUCTURE TIDY a computer program to
- standardize crystal structure data. J. Appl. Crystallogr. 20 (1987) 139-143.
 Sheldrick, G.: SHELX-97, program for the solution and refinement of crystal structures. University of Göttingen, Germany 1997.
- Keller, E.: SCHAKAL92, computer program for the graphic representation of molecular and crystallographic models. University of Freiburg, Germany 1992.