10 research outputs found

    Tuning and Probing the Distribution of Cu<sup>+</sup> and Cu<sup>2+</sup> Trap States Responsible for Broad-Band Photoluminescence in CuInS<sub>2</sub> Nanocrystals

    No full text
    The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).ChemE/Opto-electronic MaterialsApplied SciencesBN/Technici en Analiste

    High-Throughput Characterization of Single-Quantum-Dot Emission Spectra and Spectral Diffusion by Multiparticle Spectroscopy

    No full text
    In recent years, quantum dots (QDs) have emerged as bright, color-tunable light sources for various applications such as light-emitting devices, lasing, and bioimaging. One important next step to advance their applicability is to reduce particle-to-particle variations of the emission properties as well as fluctuations of a single QD’s emission spectrum, also known as spectral diffusion (SD). Characterizing SD is typically inefficient as it requires time-consuming measurements at the single-particle level. Here, however, we demonstrate multiparticle spectroscopy (MPS) as a high-throughput method to acquire statistically relevant information about both fluctuations at the single-particle level and variations at the level of a synthesis batch. In MPS, we simultaneously measure emission spectra of many (20-100) QDs with a high time resolution. We obtain statistics on single-particle emission line broadening for a batch of traditional CdSe-based core-shell QDs and a batch of the less toxic InP-based core-shell QDs. The CdSe-based QDs show significantly narrower homogeneous line widths, less SD, and less inhomogeneous broadening than the InP-based QDs. The time scales of SD are longer in the InP-based QDs than in the CdSe-based QDs. Based on the distributions and correlations in single-particle properties, we discuss the possible origins of line-width broadening of the two types of QDs. Our experiments pave the way to large-scale, high-throughput characterization of single-QD emission properties and will ultimately contribute to facilitating rational design of future QD structures.ChemE/Opto-electronic Material

    Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids

    No full text
    Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs &gt;1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The threshold can, however, be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs, we achieve quantitative control over the gain threshold. We obtain stable and reversible doping of more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ∼1 × 10-5 excitons per QD. These results demonstrate a high level of control over the gain threshold in doped QD solids, opening a new route for the creation of cheap, solution-processable, low-threshold QD lasers. ChemE/Opto-electronic MaterialsBN/Technici en Analiste

    Integrating Sphere Fourier Microscopy of Highly Directional Emission

    No full text
    Accurately controlling light emission using nano- and microstructured lenses and antennas is an active field of research. Dielectrics are especially attractive lens materials due to their low optical losses over a broad bandwidth. In this work we measure highly directional light emission from patterned quantum dots (QDs) aligned underneath all-dielectric nanostructured microlenses. The lenses are designed with an evolutionary algorithm and have a theoretical directivity of 160. The fabricated structures demonstrate an experimental full directivity of 61 ± 3, three times higher than what has been estimated before, with a beaming half-angle of 2.6°. This high value compared to previous works is achieved via three mechanisms. First, direct electron beam patterning of QD emitters and alignment markers allowed for more localized emission and better emitter-lens alignment. Second, the lens fabrication was refined to minimize distortions between the designed shape and the final structure. Finally, a new measurement technique was developed that combines integrating sphere microscopy with Fourier microscopy. This enables complete directivity measurements, contrary to other reported values, which are typically only partial directivities or estimates of the full directivity that rely partly on simulations. The experimentally measured values of the complete directivity were higher than predicted by combining simulations with partial directivity measurements. High directivity was obtained from three different materials (cadmium-selenide-based QDs and two lead halide perovskite materials), emitting at 520, 620, and 700 nm, by scaling the lens size according to the emission wavelength.ChemE/Opto-electronic Material

    Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics behind It

    Get PDF
    Colloidal nanoplatelets (NPLs) are promising materials for lasing applications. The properties are usually discussed in the framework of 2D materials, where strong excitonic effects dominate the optical properties near the band edge. At the same time, NPLs have finite lateral dimensions such that NPLs are not true extended 2D structures. Here we study the photophysics and gain properties of CdSe/CdS/ZnS core-shell-shell NPLs upon electrochemical n doping and optical excitation. Steady-state absorption and PL spectroscopy show that excitonic effects are weaker in core-shell-shell nanoplatelets due to the decreased exciton binding energy. Transient absorption studies reveal a gain threshold of only one excitation per nanoplatelet. Using electrochemical n doping, we observe the complete bleaching of the band edge exciton transitions. Combining electrochemical doping with transient absorption spectroscopy, we demonstrate that the gain threshold is fully removed over a broad spectral range and gain coefficients of several thousand cm-1 are obtained. These doped NPLs are the best performing colloidal nanomaterial gain medium reported to date, with the lowest gain threshold and broadest gain spectrum and gain coefficients that are 4 times higher than in n-doped colloidal quantum dots. The low exciton binding energy due to the CdS and ZnS shells, in combination with the relatively small lateral size of the NPLs, results in excited states that are effectively delocalized over the entire platelet. Core-shell NPLs are thus on the border between strong confinement in QDs and dominant Coulombic effects in 2D materials. We demonstrate that this limit is in effect ideal for optical gain and that it results in an optimal lateral size of the platelets where the gain threshold per nm2 is minimal. ChemE/Opto-electronic MaterialsBN/Afdelingsburea

    Locating and Controlling the Zn Content in In(Zn)P Quantum Dots

    No full text
    Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs are debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high-resolution high-angle annular dark-field imaging scanning transmission electron microscopy with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.ChemE/Opto-electronic Material

    Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots

    No full text
    In transient absorption (TA) measurements on Cd-chalcogenide quantum dots (QDs), the presence of a band-edge (BE) bleach signal is commonly attributed entirely to conduction-band electrons in the 1S(e) state, neglecting contributions from BE holes. While this has been the accepted view for more than 20 years, and has often been used to distinguish electron and hole kinetics, the reason for the absence of a hole contribution to the BE-bleach has remained unclear. Here, we show with three independent experiments that holes do in fact have a significant impact on the BE-bleach of well-passivated Cd-chalcogenide QD samples. Transient absorption experiments on high photoluminescence quantum yield CdSe/CdS/ZnS core-shell-shell QDs clearly show an increase of the band-edge bleach as holes cool down to the band edge. The relative contribution of electron-to-hole bleach is 2:1, as predicted by theory. The same measurements on core-only CdSe QDs with a lower quantum yield do not show a contribution of holes to the band-edge bleach. We assign the lack of hole bleach to the presence of ultrafast hole trapping in samples with insufficient passivation of the QD surface. In addition, we show measurements of optical gain in core-shell-shell QD solutions, providing clear evidence of a significant hole contribution to the BE transient absorption signal. Finally, we present spectroelectrochemical measurements on CdTe QDs films, showing the presence of a BE-bleach for both electron and hole injections. The presence of a contribution of holes to the bleach in passivated Cd-chalcogenides QDs bears important implications for quantitative studies on optical gain as well as for TA determinations of carrier dynamics.ChemE/Opto-electronic Material

    Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange

    No full text
    Colloidal quantum dots (QDs) allow great flexibility in the design of optoelectronic devices, thanks to their size-dependent optical and electronic properties and the possibility to fabricate thin films with solution-based processing. In particular, in QD-based heterojunctions, the band gap of both components can be controlled by varying the size of the QDs. However, control over the band alignment between the two materials is required to tune the dynamics of carrier transfer across a heterostructure. We demonstrate that ligand exchange strategies can be used to control the band alignment of PbSe and CdSe QDs in a mixed QD solid, shifting it from a type-I to a type-II alignment. The change in alignment is observed in both spectroelectrochemical and transient absorption measurements, leading to a change in the energy of the conduction band edges in the two materials and in the direction of electron transfer upon photoexcitation. Our work demonstrates the possibility to tune the band offset of QD heterostructures via control of the chemical species passivating the QD surface, allowing full control over the energetics of the heterostructure without requiring changes in the QD composition.ChemE/Opto-electronic Material

    Temporal Dynamics of Collective Resonances in Periodic Metasurfaces

    No full text
    Temporal dynamics of confined optical fields can provide valuable insights into light–matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide. To probe the resonant near-field enhancement, our IAC measurements make use of enhanced two-photon excited luminescence (TPEL) from semiconductor quantum dots deposited on the nanoparticle arrays. Thanks to the incoherent character of TPEL, the measurements are only sensitive to the fundamental optical fields and therefore can reveal clear signatures of their coherent temporal dynamics. In particular, we show that the excitation of a high-Q collective resonance gives rise to interference fringes at time delays as large as 500 fs, much greater than the incident pulse duration (150 fs). Based on these signatures, the basic characteristics of the resonances can be determined, including their Q factors, which are found to exceed 200. Furthermore, the measurements also reveal temporal beating between two different resonances, providing information on their frequencies and their relative contribution to the field enhancement. Finally, we present an approach to enhance the visibility of the resonances hidden in the IAC curves by converting them into spectrograms, which greatly facilitates the analysis and interpretation of the results. Our findings open up new perspectives on time-resolved studies of collective resonances in metasurfaces and other multiresonant systems.ChemE/Opto-electronic Material

    Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films

    No full text
    In this work, we systematically study the spectroelectrochemical response of CdSe quantum dots (QDs), CdSe/CdS core/shell QDs with varying CdS shell thicknesses, and CdSe/CdS/ZnS core/shell/shell QDs in order to elucidate the influence of localized surface trap states on the optoelectronic properties. By correlating the differential absorbance and the photoluminescence upon electrochemically raising the Fermi level, we reveal that trap states near the conduction band (CB) edge give rise to nonradiative recombination pathways regardless of the CdS shell thickness, evidenced by quenching of the photoluminescence before the CB edge is populated with electrons. This points in the direction of shallow trap states localized on the CdS shell surface that give rise to nonradiative recombination pathways. We suggest that these shallow trap states reduce the quantum yield because of enhanced hole trapping when the Fermi level is raised electrochemically. We show that these shallow trap states are removed when additional wide band gap ZnS shells are grown around the CdSe/CdS core/shell QDs.ChemE/Opto-electronic Material
    corecore