157 research outputs found

    Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

    Get PDF
    Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    The future for sheep

    Get PDF
    In the 1960\u27s the sheep industry has been described as being at a crossroads. Serious concern has been expressed over the future of the entire industry. Declining numbers, competition from other meats and fabrics and low returns have all been cited as reasons for pessimism. But recent developments in product improvement and industrywide efforts to a~tack problems have given rise to a degree of cautious optimism about the future.https://lib.dr.iastate.edu/card_reports/1022/thumbnail.jp

    Implementing iron management clinical practice guidelines in patients with chronic kidney disease having dialysis

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Objective: To evaluate the outcomes of and barriers to implementing standard guidelines (Caring for Australasians with renal impairment [CARI]), using iron management in patients having dialysis as an example. Design and setting: On-site review of iron management processes at six Australian dialysis units varying in size and locality. Patients’ iron indices and haemoglobin levels were obtained from the Australian and New Zealand Dialysis and Transplant Registry. Participants: Patients with chronic kidney disease who were dependent on dialysis. Main outcome measures: Processes for assessing indices of iron stores and iron supplementation; comparison with target indices in the CARI guidelines. Results: There was considerable variability among the units in achievement of haemoglobin and iron targets, with 25%–32% of patients achieving haemoglobin targets of 110–120 g/L, 30%–68% achieving ferritin targets of 300–800 ÎŒg/L, and 65%–73% achieving transferrin saturation targets of 20%–50%. Implementation barriers included lack of knowledge, lack of awareness of or trust in the CARI guideline, inability to implement the guideline, and inability to agree on a uniform unit protocol. Factors associated with achieving the CARI guideline targets included nurse-driven iron management protocols, use of an iron management decision aid, fewer nephrologists per dialysis unit, and a “proactive” (actively keeping iron levels within target range) rather than “reactive” (only reacting if iron levels are out of the range) protocol. Conclusions: Variability in achievement of iron targets, despite the availability of a clinical practice guideline, may be explained by variability in processes of care for achieving and maintaining adequate iron parameters.Michelle J Irving, Jonathan C Craig, Martin Gallagher, Stephen McDonald, Kevan R Polkinghorne, Rowan G Walker and Simon D Roge

    Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis?

    Get PDF
    Osteoarthritis (OA) is characterized by a loss of joint mobility and pain resulting from progressive destruction and loss of articular cartilage secondary to chondrocyte death and/ or senescence. Certain stimuli including nitric oxide (NO) and the pro-inflammatory cytokine tumor necrosis factor α (TNF-α have been implicated in this chondrocyte death and the subsequent accelerated damage to cartilage. In this study, we demonstrate that a corticotrophin releasing factor (CRF) family peptide, urocortin (Ucn), is produced by a human chondrocyte cell line, C-20/A4, and acts both as an endogenous survival signal and as a cytoprotective agent reducing the induction of apoptosis by NO but not TNF-α when added exogenously. Furthermore, treatment with the NO donor S-nitroso-N-acetyl-D-L-penicillamine upregulates chondrocyte Ucn expression, whereas treatment with TNF-α does not. The chondroprotective effects of Ucn are abolished by both specific ligand depletion (with an anti-Ucn antibody) and by CRF receptor blockade with the pan-CRFR antagonist α-helical CRH(9-41). CRFR expression was confirmed by reverse transcription-PCR with subsequent amplicon sequence analysis and demonstrates that C-20/A4 cells express both CRFR1 and CRFR2, specifically CRFR1α and CRFR2ÎČ. Protein expression of these receptors was confirmed by western blotting. The presence of both Ucn and its receptors in these cells, coupled with the induction of Ucn by NO, suggests the existence of an endogenous autocrine/paracrine chondroprotective mechanism against stimuli inducing chondrocyte apoptosis via the intrinsic/mitochondrial pathway

    Role of zinc and α2macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma

    Get PDF
    Decreased natural killer (NK) activity as well as interleukin 2 (IL-2) are risk factors for the progression of cervical carcinoma. NK activity and IL-2 may be thymus controlled. Plasma levels of active thymulin, a zinc-dependent thymic hormone (ZnFTS), are reduced in cancer because of the low peripheral zinc bioavailability. Zinc and thymulin are relevant for normal immune functions. α2-Macroglobulin is an inhibitor of matrix metalloproteases (MMPs) against invasive tumour proliferation. Because α2-macroglobulin has a binding affinity (Kd) for zinc that is higher than does thymulin, it may play a key role in immune efficiency in cancer. Plasma samples of 22 patients (age range 35–60 years) with locally advanced squamous cervical carcinoma and with FIGO stage Ib2–IIb were examined. They showed reduced active thymulin, decreased NK activity and IL-2 production, increased soluble IL-2 receptor (sIL-2R) and augmented α2-macroglobulin in the circulation, whereas plasma zinc levels were within the normal range for age. Significant positive correlations were found between zinc or active thymulin and α2-macroglobulin (r = 0.75, P< 0.01, r = 0.78, P< 0.01, respectively) in cancer patients. In vitro zinc increases IL-2 production from peripheral blood mononuclear cells (PBMCs) of cancer patients. These data suggest that an increase in α2-macroglobulin, which competes with thymulin for zinc binding, may be involved in causing a thymulin deficit with a consequent decrease of IL-2 and NK cytotoxicity. Thus, physiological zinc treatment in cervical carcinoma maybe restores impaired central and peripheral immune efficiency. © 1999 Cancer Research Campaig

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    Get PDF
    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition
    • 

    corecore