8 research outputs found

    Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata

    Get PDF
    Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation.We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events.Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata

    Signatures of balancing selection are maintained at disease resistance loci following mating system evolution and a population bottleneck in the genus Capsella

    No full text
    Background: Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. Results: In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. Conclusions: Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome

    Signatures of balancing selection are maintained at disease resistance loci following mating system evolution and a population bottleneck in the genus Capsella

    Get PDF
    Background: Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. Results: In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. Conclusions: Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome

    Signatures of balancing selection are maintained at disease resistance loci following mating system evolution and a population bottleneck in the genus Capsella

    No full text
    Abstract Background Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. Results In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. Conclusions Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome
    corecore