33 research outputs found

    Combined Use of MS2 and PP7 Coat Fusions Shows that TIA-1 Dominates hnRNP A1 for K-SAM Exon Splicing Control

    Get PDF
    Splicing of the FGFR2 K-SAM exon is repressed by hnRNP A1 bound to the exon and activated by TIA-1 bound to the downstream intron. Both proteins are expressed similarly by cells whether they splice the exon or not, so it is important to know which one is dominant. To answer this question, we used bacteriophage PP7 and bacteriophage MS2 coat fusions to tether hnRNP A1 and TIA-1 to distinct sites on the same pre-mRNA molecule. hnRNP A1 fused to one coat protein was tethered to a K-SAM exon containing the corresponding coat protein's binding site. TIA-1 fused to the other coat protein was tethered to the downstream intron containing that coat protein's binding site. This led to efficient K-SAM exon splicing. Our results show that TIA-1 is dominant for K-SAM exon splicing control and validate the combined use of PP7 and MS2 coat proteins for studying posttranscriptional events

    Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals

    Get PDF
    Non-coding RNAs (ncRNAs) are versatile regulators in cellular networks. While most trans-acting ncRNAs possess well-defined mechanisms that can regulate transcription or translation, they generally lack the ability to directly sense cellular signals. In this work, we describe a set of design principles for fusing ncRNAs to RNA aptamers to engineer allosteric RNA fusion molecules that modulate the activity of ncRNAs in a ligand-inducible way in Escherichia coli. We apply these principles to ncRNA regulators that can regulate translation (IS10 ncRNA) and transcription (pT181 ncRNA), and demonstrate that our design strategy exhibits high modularity between the aptamer ligand-sensing motif and the ncRNA target-recognition motif, which allows us to reconfigure these two motifs to engineer orthogonally acting fusion molecules that respond to different ligands and regulate different targets in the same cell. Finally, we show that the same ncRNA fused with different sensing domains results in a sensory-level NOR gate that integrates multiple input signals to perform genetic logic. These ligand-sensing ncRNA regulators provide useful tools to modulate the activity of structurally related families of ncRNAs, and building upon the growing body of RNA synthetic biology, our ability to design aptamer–ncRNA fusion molecules offers new ways to engineer ligand-sensing regulatory circuits

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link
    corecore