22 research outputs found

    Micro-Raman Spectroscopy for Detection of Label-Free and Oil Red O Labeled PEGylated Nanoliposomes in hCmec/D3 Cell Internalization Studies

    Get PDF
    Rapid development of nanomedicines necessitates advancement in internalization techniques which can accurately distinguish between the complex environments of cells and nanocarriers. Internalization (or endocytosis) studies of oil red O labeled and label-free PEGylated-lecithin/cholesterol nanoliposomes was performed using micro-Raman spectroscopy. The C.O stretching vibrations and CCH scissoring bendings of naphthalene ring around 1225 cm.1 as well as the N=N stretching vibrations at 1377 cm.1 are prominent peaks absent from the label-free spectra which can be used for detection of internalized oil red O labeled nanoliposomes. Suitability of oil red O as a liposome marker was confirmed by stability studies of the incorporated dye and automated fluorescence cell counting. The C.C stretching region with a prominent wide band centered at 1080 cm.1 indicative of larger gauche conformer content typical for the lecithin-cholesterol nanoliposomes and the strong maximum at 980 cm.1 associated with O.C.C.N+ stretching vibrations of the liposome polar head groups are important for studying label-free nanoliposome cell internalization

    Digital light processing 3D printing of Hydrochlorothiazide with modified release

    Get PDF
    Additive manufacturing also known as 3D printing gains more attention in scientific research due to its great advantages in simple and fast producing custom-designed products. 3D models created with computer-aided design (CAD) are presented to the printers and with different techniques, printing layer-by-layer desired products are made. Most used techniques in additive manufacturing are fused deposition modeling (FDM), material and ink jetting, sintering and vat polymerization techniques. Stereolithography (SLA) and digital light processing (DLP) are the most frequently used techniques in vat polymerization due to their advantages. In DLP technique, a digital micromirror is used for gradually exposing and solidifying a layer of liquid photopolymer solution following a layer-by-layer mechanism (Adamov et al., 2022; Zhu et al., 2020). Nowadays additive manufacturing finds its place in medicine by producing medical devices, implants, prostheses and medical equipment. 3D printing has enormous potential in personalized medicine as a result of different possibilities in production of dosage forms with desired shapes that contain one or more active compounds that can have different release profiles. 3D printing helps in overcoming the problem with permeability and solubility of some drugs and enables using drugs from different BCS classes.14th Central European Symposium on Pharmaceutical Technology, 28th - 30th September, Ohrid, N. Macedonia, 202

    The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

    Get PDF
    Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols

    Nanotechnology in medicine – our experiences

    Get PDF
    The success of design criteria for long-circulating drug delivery systems to support membrane receptor-ligand interaction and internalization has been limited and there is a need to develop smarter approaches for efficient drug tumor targeting. In order to overcome some of the current limitations, stimulus-responsive targeting has been combined with passive and active targeting strategies. More innovative nanocarriers that hold promise to optimize targeted drug delivery are systems with the ability for transformation from the stealth long-circulating form to cell interactive form in the complex tumor environment, exposing ligands at their surface for improved ligandreceptor interaction and cell internalization. This short review will be an overview of several nanomedicines designed and characterized by our research group, and the interplay between their physicochemical characteristics and biological fate

    Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

    Get PDF
    Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarrier

    Macroalgal polysaccharides in biomimetic nanodelivery systems

    No full text
    Background: Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. Methods: Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. Results: Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. Conclusion: Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.Scopu

    Viability of L.casei in symbiotic carrot juice during fermentation and storage

    Get PDF
    Although dairy products are generally good matrices for the delivery of probiotics to humans and traditionally the most used, fruit juices are of growing interest, due to their pleasant taste profile and refreshing characteristics. However, the low survival rate of probiotics in fruit juices resulting from acid environment is of concern.In this study, carrot juice was inoculated with free probiotic cells of L. casei and symbiotic microparticles loaded with L. casei to compare the survival rate of the rpobiotic during fermentation and storage of the symbiotic beverages at 4oC for 6 weeks. The results showed that the survival rate of free probiotic cells in carrot juice was below the therapeutic level at the end of the test due to their sensitivity to the acidic conditions in the medium and need protection to maintain the viability during storage. Results also showed that adding of encapsulated L. casei in carrot juice as symbiotic chitosan-Ca-alginate might solve the problem. Regarding the sensory characteristics of the carrot juice with microparticles, non-significant changes of the textural quality due to the low particle size was observed. Therefore, carrot juice containing symbiotic microparticles may be a new functional product and the effect of particles on the consumers acceptance should be further studied

    A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam

    No full text
    Content uniformity is a critical attribute for potent and low-dosage formulations of active pharmaceutical ingredient (API) that, in addition to the formulation parameters, plays pivotal role during pharmaceutical development and production. However, when API content is low, implementing a vibrational spectroscopic analytical tool to monitor the content and blend uniformity remains a challenging task. The aim of this study was to showcase the potentials of mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopy for quantitative analysis of alprazolam (ALZ) in a low-content powder blends with lactose, which is used as a common diluent for tablets produced by direct compression. The offered approach might be further scaled up and exploited for potential application in the process analytical technology (PAT). Partial least square and orthogonal PLS (OPLS) methodologies were employed to build the calibration models from raw and processed spectral data (standard normal variate, first and second derivatives). The models were further compared regarding their main statistical indicators: correlation coefficients, predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross-validation (RMSEEcv). All statistical models presented high regression and predictivity coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR, and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ NIR spectra and the major band overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup (resulting in a non-representative spectral acquisition of the sample) was regarded as a main limitation for the MIR-based calibration model. The OPLS models of the Raman spectra of the powder blends manifested favorable statistical indicators for the accuracy of the calibration model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman scattering calibration model was optimized in narrower scanning range (1700–700 cm−1) and its prediction power was evaluated (root mean square error of prediction, RMSEP = 0.03%). Thus, the Raman spectroscopy presented the most favorable statistical indicators in this comparative study and therefore should be further considered as a PAT for the quantitative determination of ALZ in low-content powder blends.Scopu
    corecore