119 research outputs found

    Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma

    Get PDF
    Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma

    Differential effects of ELX/TEZ/IVA on organ-specific CFTR function in two patients with the rare CFTR splice mutations c.273+1G>A and c.165-2A>G

    Get PDF
    Introduction: Evidence for the efficiency of highly-effective triple-CFTR-modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of people with cystic fibrosis (pwCF) with rare mutations. Comprehensive assessment of CFTR function can provide critical information on the impact of ETI on CFTR function gains for such rare mutations, lending argument of the prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation that has not yet been functionally characterized. We here describe the functional changes induced by ETI in two brothers who are compound heterozygous for the splice mutations c.273+1G>C and c.165-2A>G.Methods: We assessed the effects of ETI on CFTR function by quantitative pilocarpine iontophoresis (QPIT), nasal potential difference measurements (nPD), intestinal current measurements (ICM), β-adrenergic sweat secretion tests (SST) and multiple breath washout (MBW) prior to and 4 months after the initiation of ETI.Results: Functional CFTR analysis prior to ETI showed no CFTR function in the respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in either brother. In contrast, β-adrenergic stimulated, CFTR-mediated sweat secretion was detectable in the CF range. Under ETI, both brothers continued to exhibit high sweat chloride concentration in QPIT, evidence of low residual CFTR function in the respiratory epithelia, but normalized β-adrenergically stimulated production of primary sweat.Discussion: Our results are the first to demonstrate that the c.165-2A>G/c.273+1G>C mutation genotype permits mutant CFTR protein expression. We showed organ-specific differences in the expression of CFTR and consecutive responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that the individual response of rare CFTR mutations to highly-effective CFTR modulation cannot be predicted from assays in standard cell cultures, but requires the personalized multi-organ assessment by CFTR biomarkers

    Efficacy, safety and quality of life in a multicenter, randomized, placebo-controlled trial of low-dose peanut oral immunotherapy in children with peanut allergy

    Get PDF
    BACKGROUND: Only 2 small placebo-controlled trials on peanut oral immunotherapy (OIT) have been published. OBJECTIVE: We examined the efficacy, safety, immunologic parameters, quality of life (QOL), and burden of treatment (BOT) of low-dose peanut OIT in a multicenter, double-blind, randomized placebo-controlled trial. METHODS: A total of 62 children aged 3 to 17 years with IgE-mediated, challenge-proven peanut allergy were randomized (1:1) to receive peanut OIT with a maintenance dose of 125 to 250 mg peanut protein or placebo. The primary outcome was the proportion of children tolerating 300 mg or more peanut protein at oral food challenge (OFC) after 16 months of OIT. We measured the occurrence of adverse events (AEs), immunologic changes, and QOL before and after OIT and BOT during OIT. RESULTS: Twenty-three of 31 (74.2%) children of the active group tolerated at least 300 mg peanut protein at final OFC compared with 5 of 31 (16.1%) in the placebo group (P < .001). Thirteen of 31 (41.9%) children of the active versus 1 of 31 (3.2%) of the placebo group tolerated the highest dose of 4.5 g peanut protein at final OFC (P < .001). There was no significant difference between the groups in the occurrence of AE-related dropouts or in the number, severity, and treatment of objective AEs. In the peanut-OIT group, we noted a significant reduction in peanut-specific IL-4, IL-5, IL-10, and IL-2 production by PBMCs compared with the placebo group, as well as a significant increase in peanut-specific IgG4 levels and a significant improvement in QOL; 86% of children evaluated the BOT positively. DISCUSSION: Low-dose OIT is a promising, effective, and safe treatment option for peanut-allergic children, leading to improvement in QOL, a low BOT, and immunologic changes showing tolerance development

    Small Airway Dysfunction Links Asthma Severity with Physical Activity and Symptom Control.

    Get PDF
    BACKGROUND Little is known about the role of small airway dysfunction (SAD) and its complex relation with asthma control and physical activity (PA). OBJECTIVE To investigate the interrelations among SAD, risk factors for asthma severity, symptom control, and PA. METHODS We assessed SAD by impulse oscillometry and other sophisticated lung function measures including inert gas washout in adults with asthma (mild to moderate, n = 140; severe, n = 128) and 69 healthy controls from the All Age Asthma Cohort. We evaluated SAD prevalence and its interrelation with risk factors for asthma severity (older age, obesity, and smoking), type 2 inflammation (sputum and blood eosinophils, fractional exhaled nitric oxide), systemic inflammation (high-sensitivity C-reactive protein), asthma control (AC), and PA (accelerometer for 1 week). We applied a clinical model based on structural equation modeling that integrated causal pathways among these clinical variables. RESULTS The prevalence of SAD ranged from 75% to 90% in patients with severe asthma and from 53% to 64% in mild to moderate asthma. Severe SAD was associated with poor AC and low PA. Structural equation modeling indicated that age, obesity, obesity-related systemic inflammation, T2 inflammation, and smoking are independent predictors of SAD. Small airway dysfunction was the main determinant factor of AC, which in turn affected PA. Obesity affected AC directly and through its contribution to SAD and low PA. In addition, PA had bidirectional associations with obesity, SAD, and AC. Structural equation modeling also indicated interrelations among distal airflow limitation, air trapping, and ventilation heterogeneity. CONCLUSIONS Small airway dysfunction is a highly prevalent key feature of asthma that interrelates a spectrum of distal lung function abnormalities with risk factors for asthma severity, asthma control, and physical activity

    Absence of Regulatory T Cells Causes Phenotypic and Functional Switch in Murine Peritoneal Macrophages

    Get PDF
    Tissue macrophages are important components of tissue homeostasis and inflammatory pathologies. In the peritoneal cavity, resident macrophages interact with a variety of immune cells and can exhibit broad range of phenotypes and functions. Forkhead-box-P3 (FOXP3)+ regulatory T cells (Tregs) play an indispensable role in maintaining immunological tolerance, yet whether, and how the pathological condition that results from the lack of functional Tregs affects peritoneal macrophages (PM) is largely unknown. We used FOXP3-deficient scurfy (Sf) mice to investigate PM behavior in terms of the missing crosstalk with Tregs. Here, we report that Treg deficiency induced a marked increase in PM numbers, which was reversed after adoptive transfer of CD4+ T cells or neutralization of macrophage colony-stimulating factor. Ex vivo assays demonstrated a pro-inflammatory state of PM from Sf mice and signs of excessive activation and exhaustion. In-depth immunophenotyping of Sf PM using single-cell chipcytometry and transcriptome analysis revealed upregulation of molecules involved in the initiation of innate and adaptive immune responses. Moreover, upon transfer to non-inflammatory environment or after injection of CD4+ T cells, PM from Sf mice reprogramed their functional phenotype, indicating remarkable plasticity. Interestingly, frequencies, and immune polarization of large and small PM subsets were dramatically changed in the FOXP3-deficient mice, suggesting distinct origin and specialized function of these subsets in inflammatory conditions. Our findings demonstrate the significant impact of Tregs in shaping PM identity and dynamics. A better understanding of PM function in the Sf mouse model may have clinical implication for the treatment of immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, and other forms of immune-mediated enteropathies

    Interobserver agreement in interpretation of chest radiographs for pediatric community acquired pneumonia: Findings of the pedCAPNETZ-cohort.

    Get PDF
    Although chest radiograph (CXR) is commonly used in diagnosing pediatric community acquired pneumonia (pCAP), limited data on interobserver agreement among radiologists exist. PedCAPNETZ is a prospective, observational, and multicenter study on pCAP. N = 233 CXR from patients with clinical diagnosis of pCAP were retrieved and n = 12 CXR without pathological findings were added. All CXR were interpreted by a radiologist at the site of recruitment and by two external, blinded pediatric radiologists. To evaluate interobserver agreement, the reporting of presence or absence of pCAP in CXR was analyzed, and prevalence and bias-adjusted kappa (PABAK) statistical testing was applied. Overall, n = 190 (82%) of CXR were confirmed as pCAP by two external pediatric radiologists. Compared with patients with pCAP negative CXR, patients with CXR-confirmed pCAP displayed higher C-reactive protein levels and a longer duration of symptoms before enrollment (p < .007). Further parameters, that is, age, respiratory rate, and oxygen saturation showed no significant difference. The interobserver agreement between the onsite radiologists and each of the two independent pediatric radiologists for the presence of pCAP was poor to fair (69%; PABAK = 0.39% and 76%; PABAK = 0.53, respectively). The concordance between the external radiologists was fair (81%; PABAK = 0.62). With regard to typical CXR findings for pCAP, chance corrected interrater agreement was highest for pleural effusions, infiltrates, and consolidations and lowest for interstitial patterns and peribronchial thickening. Our data show a poor interobserver agreement in the CXR-based diagnosis of pCAP and emphasized the need for harmonized interpretation standards

    Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy

    Get PDF
    Genetic factors and mechanisms underlying food allergy are largely unknown. Due to heterogeneity of symptoms a reliable diagnosis is often difficult to make. Here, we report a genome-wide association study on food allergy diagnosed by oral food challenge in 497 cases and 2387 controls. We identify five loci at genome-wide significance, the clade B serpin (SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 locus, and the human leukocyte antigen (HLA) region. Stratifying the results for the causative food demonstrates that association of the HLA locus is peanut allergy-specific whereas the other four loci increase the risk for any food allergy. Variants in the SERPINB gene cluster are associated with SERPINB10 expression in leukocytes. Moreover, SERPINB genes are highly expressed in the esophagus. All identified loci are involved in immunological regulation or epithelial barrier function, emphasizing the role of both mechanisms in food allergy

    GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia

    Get PDF
    Transient leukemia (TL) is evident in 5–10% of all neonates with Down syndrome (DS) and associated with N-terminal truncating GATA1-mutations (GATA1s). Here we report that TL cell clones generate abundant eosinophils in a substantial fraction of patients. Sorted eosinophils from patients with TL and eosinophilia carried the same GATA1s-mutation as sorted TL-blasts, consistent with their clonal origin. TL-blasts exhibited a genetic program characteristic of eosinophils and differentiated along the eosinophil lineage in vitro. Similarly, ectopic expression of Gata1s, but not Gata1, in wild-type CD34+-hematopoietic stem and progenitor cells induced hyperproliferation of eosinophil promyelocytes in vitro. While GATA1s retained the function of GATA1 to induce eosinophil genes by occupying their promoter regions, GATA1s was impaired in its ability to repress oncogenic MYC and the pro-proliferative E2F transcription network. ChIP-seq indicated reduced GATA1s occupancy at the MYC promoter. Knockdown of MYC, or the obligate E2F-cooperation partner DP1, rescued the GATA1s-induced hyperproliferative phenotype. In agreement, terminal eosinophil maturation was blocked in Gata1Δe2 knockin mice, exclusively expressing Gata1s, leading to accumulation of eosinophil precursors in blood and bone marrow. These data suggest a direct relationship between the N-terminal truncating mutations of GATA1 and clonal eosinophilia in DS patients
    • …
    corecore