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Introduction: Evidence for the efficiency of highly-effective triple-CFTR-
modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either
demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of
people with cystic fibrosis (pwCF) with rare mutations. Comprehensive
assessment of CFTR function can provide critical information on the impact of
ETI on CFTR function gains for such rare mutations, lending argument of the
prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation
that has not yet been functionally characterized. We here describe the functional
changes induced by ETI in two brothers who are compound heterozygous for the
splice mutations c.273+1G>C and c.165-2A>G.

Methods: We assessed the effects of ETI on CFTR function by quantitative
pilocarpine iontophoresis (QPIT), nasal potential difference measurements
(nPD), intestinal current measurements (ICM), β-adrenergic sweat secretion
tests (SST) and multiple breath washout (MBW) prior to and 4 months after the
initiation of ETI.

Results: Functional CFTR analysis prior to ETI showed no CFTR function in the
respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in
either brother. In contrast, β-adrenergic stimulated, CFTR-mediated sweat
secretion was detectable in the CF range. Under ETI, both brothers continued
to exhibit high sweat chloride concentration in QPIT, evidence of low residual
CFTR function in the respiratory epithelia, but normalized β-adrenergically
stimulated production of primary sweat.
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Discussion: Our results are the first to demonstrate that the c.165-2A>G/
c.273+1G>C mutation genotype permits mutant CFTR protein expression. We
showed organ-specific differences in the expression of CFTR and consecutive
responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably
accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that
the individual response of rare CFTR mutations to highly-effective CFTR
modulation cannot be predicted from assays in standard cell cultures, but
requires the personalized multi-organ assessment by CFTR biomarkers.

KEYWORDS

cystic fibrosis transmembrane conductance regulator (CFTR), elexacaftor/tezacaftor/
ivacaftor, c.165-2A>G, CFTR rare mutations, exon 3

1 Introduction

Cystic fibrosis (CF) is a severe ion channel disease of autosomal
recessive inheritance that is caused by mutations in the Cystic
Fibrosis Transmembrane Conductance Regulator (CFTR) gene
(Stoltz et al., 2015; Shteinberg et al., 2021). CFTR is a low
conductance anion-selective, ATP-regulated ion channel. Its
major role is to regulate chloride and bicarbonate ion movements
across epithelial tissues throughout the body (Stoltz et al., 2015).
More than 2,000 mutations and polymorphisms are known in the
CFTR gene, with rare mutations remaining to be functionally
characterized (Tümmler et al., 1996).

CF is the first successful example of customized drug
development for mutation-specific therapy (Tümmler, 2022).
CFTR correctors have been developed for improved
posttranslational maturation and trafficking of mutants such as
p.Phe508del that do not achieve a stable fully-folded polytopic
configuration. Potentiators of CFTR activity increase chloride and
bicarbonate flux across apical epithelial membranes. The potentiator
Ivacaftor enhances the ATP-independent opening of the CFTR
channel and thereby overcomes the defective ATP-dependent
opening of CF-causing gating mutations (Van Goor et al., 2009;
Eckford et al., 2012). The new triple combination therapy with the
correctors elexacaftor and tezacaftor and the potentiator ivacaftor
has shown to be highly efficient for the large group of patients with
one or two p.Phe508del alleles regarding lung function and
reduction of sweat chloride concentration (Middleton et al., 2019;
Barry et al., 2021; Zemanick et al., 2021; Graeber et al., 2022;
Sutharsan et al., 2022) and improvement of CFTR function in
airway and intestinal epithelia (Graeber et al., 2022).

To date, approximately 90% of people with cystic fibrosis
(pwCF) are eligible for highly-effective triple-CFTR-modulatory
therapy with elexacaftor/tezacaftor/ivacaftor (ETI) as
demonstrated in clinical trials or in vitro testing. However, such
evidence is lacking for about 10% of pwCF with rare mutations
where clinical trials are unlikely to address their response to ETI. In
these cases, comprehensive assessment of CFTR function can
provide critical information on the impact of ETI on CFTR
function gains for such rare mutations, lending argument of the
prescription of ETI.

We here describe assessment of organ-specific in vivo and ex
vivo baseline CFTR function and the functional changes induced by
ETI in two brothers (B1 and B2) who are compound heterozygous
for the splice mutations c.273+1G>C and c.165-2A>G. c.273+1G>A

is a donor splice mutation at position c.273+1 of the first nucleotide
in intron 3 of the CFTR gene, where the obligatory conserved
guanine (G) has been replaced by an adenine (A) (Tümmler,
2022). This leads to the absence of exon 3 in the CFTR mRNA
messenger and a reading frame shift of the CFTR mRNA, causing
different amino acids to be encoded from exon 4 onward and
repeated stop signaling (Dörk et al., 1993). In other words, the
c.273+1G>A mutation is a “loss of function” mutation, causing the
inability to synthesize a functional CFTR protein. The mutation is
assigned to CFTR mutation class 1.

In the acceptor splice mutation c.165-2A>G, adenine (A) is
exchanged for guanine (G) at the penultimate position in intron 2.
The mutation is rare and has not yet been characterized in terms of
its effects on CFTR mRNA composition. However, based on CFTR
acceptor splice mutations in other introns of the CFTR gene, we can
again expect the skipping of exon 3 as the major consequence of the
c.165-2 A>G mutation. Like c.273+1G>A, c.165-2 A>G should be a
class I mutation.

The two mutations affect the canonical splice sites flanking exon
3. Exon 3 skipping from both alleles should lead to a knock-out
phenotype of no functional CFTR protein provided that no other
CFTR mRNA isoforms are produced. However, as shown in this
report, an organ-specific rescue of CFTR function was observed by
CFTR biomarkers in the two index cases who are compound
heterozygous for the rare splice mutations c.165-2A>G and
c.273+1G>C. The two brothers showed residual CFTR activity in
sweat secretion and gained more CFTR activity during ETI triple
therapy in the respiratory epithelium and the secretory coil of the
sweat gland.

2 Materials and methods

In this study, we assessed the effects of ETI on CFTR function in
two brothers (B1 and B2) who are compound heterozygous for the
splice mutations c.273+1G>C and c.165-2A>G. For clinical
evaluation, we monitored the lung clearance index 2.5 (LCI2.5) by
multiple breath washout (MBW). We quantified CFTR-function
using quantitative pilocarpine iontophoresis (QPIT), nasal potential
difference measurements (nPD), intestinal current measurements
(ICM) and β-adrenergic sweat secretion tests (SST). All tests were
performed prior to and 4 months after the initiation of ETI.

MBW testing was performed with the Exhalyzer D system (Eco
Medics), and 100% oxygen was used to wash out resident nitrogen
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from the lungs with a mouthpiece as interface (Stahl et al., 2017). All
measurements were using spiroware 3.3.1 (Eco Medics) (Stahl et al.,
2020; Graeber et al., 2021; Wyler et al., 2021). The upper limit of
normal (ULN) was determined as 7.1 (Wyler et al., 2021).

QPIT was performed following the German national
diagnostic guideline (Nährlich et al., 2013) and the guidelines
of the Clinical and Laboratory Standards Institute (Wayne,
2009). Pilocarpine iontophoresis was used to stimulate the
skin and sweat was collected with the Macroduct® system
(Model 3700, Wescor, Logan UT, United States). Sweat
chloride concentration was measured using a chloridometer
(KWM 20 Chloridometer, Kreienbaum, Langenfeld, Germany)
in a minimum volume of 30 μL.

NPD measurements were performed according to the Standard
Operating Procedure nPD_EU001, version 1.7 (March 2013) “Nasal
Potential Difference (nPD) Measurement for Diagnosis and Clinical
Trials in Cystic Fibrosis” of the European Cystic Fibrosis Society
(ECFS) Diagnostic Network Working Group and Clinical Trials
Network and as previously described (Sermet-Gaudelus et al., 2010;
Rowe et al., 2011; Graeber et al., 2018) and published recently
(Graeber et al., 2022). The Sermet Score was used to discriminate
between normal (>0.27) and reduced (<0.27) CFTR function in the
respiratory epithelium of the nose (Sermet-Gaudelus et al., 2010).

ICM was performed according to the Standard Operating
Procedure ICM_EU001, version 2.7 (October 2011) “Ion
Transport in Rectal Biopsies for Diagnosis and Clinical Trials in
Cystic Fibrosis” of the European Cystic Fibrosis Society (ECFS)
Diagnostic Network Working Group and Clinical Trials Network

modified by in-house protocol adjustments at the CF
electrophysiology laboratory in Hannover (Graeber et al., 2015;
Graeber et al., 2018). CFTR function in rectal tissue biopsies was
quantified using the response to forskolin/IBMX and carbachol in
μA/cm2.

The β-adrenergic sweat secretion test was performed as
previously published (Pallenberg et al., 2022) using the
AutoBuSTeD software for automatic analysis of sweat bubble
formation. Sweat rates were measured in sweat volume (nL) per
time (min). A β-adrenergic sweat rate of < 0.16 nL/min was defined
as impaired CFTR function.

2.1 Statistical analysis

We analyzed all data with GraphPad Prism version 9.0.1
(GraphPad Software) and R 3.6.2 (R Core Team, 2018).

3 Results

3.1 Clinical characteristics

Both patients were compound heterozygous for the rare splice
mutations c.273+1G>C and c.165-2A>G. At baseline, B1 was
10.2 years old and B2 was 7.2 years, both of them presented with
the phenotype of pancreatic insufficient cystic fibrosis (PI-CF). Prior
to ETI, the sweat chloride concentrations were in the typical PI-CF

FIGURE 1
Effects of ETI on QPIT (A), LCI2.5 (B), nPD basic potential (C), nPD Amiloride response (D), nPD cumulative depolarization response to chloride-free
solution and isoproterenol (E), nPD Sermet Score (F), response to forskolin/IBMX and carbachol in ICM (G) and SST (H) in brother 1 (triangle) and brother 2
(circle) compared to the median effect on pwCF with one or two p.Phe508del alleles (white square) and reference values for healthy controls (HC, star).
Dashed lines indicate published limits of normal for QPIT (Nährlich et al., 2013), LCI2.5 (Wyler et al., 2021), nPD Sermet Score (Sermet-Gaudelus et al.,
2010) and SST (Pallenberg et al., 2022).
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range (B1: 84 mmol/L, B2: 110 mmol/L) and LCI2.5 values showed
moderate lung ventilation inhomogeneity (B1: 9.06, B2: 11.8). After
4 months of CFTR modulator therapy with ETI, sweat chloride
concentrations remained in the PI-CF range (B1: 102 mmol/L, B2:
115 mmol/L, Figure 1A) and only modest improvements in
pulmonary function were seen in the LCI2.5 values (B1: 8.66, B2:
9.86, Figure 1B; Table 1).

3.2 Effects of ETI on the CFTR function of the
respiratory epithelia

CFTR function in the respiratory epithelium was determined
by nasal potential difference measurement. At baseline,
B1 presented with typical findings for PI-CF (for reference
values see Table 1). The basic potential was in the CF range
(right nostril: −51 mV, left nostril: −28 mV, Figure 1C) and we
saw a high hyperpolarization response to amiloride (right:
47 mV, left: 27 mV, Figure 1D). The cumulative depolarization
response to chloride-free solution and isoproterenol was absent
(left and right nostril: 0 mV, Figure 1E). Under ETI, there were no

relevant changes in basic potential or amiloride response.
However, cumulative depolarization response to chloride-free
solution and isoproterenol improved slightly as a sign of low
residual CFTR function under ETI (right nostril: −5 mV, left
nostril −2 mV). The Sermet score improved to some extent but
remained in the CF-range (<0.27) from −2.4 to −0.9 (right
nostril) and −1.4 to −1.2 (left nostril; Figure 1F; Table 1).

Prior to ETI, B2 showed a normal basic potential in the right
nostril (−17 mV, Figure 1C), hyperpolarization to amiloride in the
borderline CF range (17 mV, Figure 1D), and a cumulative
depolarization response to chloride-free solution and
isoproterenol in the CF range (0 mV, Figure 1E). In the left
nostril, all values were in the typical CF range. Four months of
ETI therapy led to no significant improvements in CFTR function as
measured by cumulative depolarization response (Figure 1E). The
basic potential increased from −17 to −4 mV (right nostril)
and −40 to −28 mV (left nostril, Figure 1C). At baseline, the
Sermet Score was −0.85 (right nostril) and −1.5 (left nostril) and
showed mild improvements to −0.1 (right nostril) and −1.3 (left
nostril) under ETI, remaining in the CF range (<0.27) (Figure 1F;
Table 1).

TABLE 1 Clinical and functional parameters of the two brothers before and under ETI therapy and reference values for pwCF with one (Δ/MF) or two (Δ/Δ)
p.Phe508del alleles without CFTR-modulator therapy (baseline) and after 3 months of ETI (ETI) and healthy controls (HC).

Clinical parameters Brother 1 (B1) Brother 2 (B2) References values

Baseline ETI Baseline ETI pwCF
(baseline)
median

pwCF (ETI)
median

HC
median

Δ/MF Δ/Δ Δ/MF Δ/Δ

Gender m m — — —

Phenotype PI-CF PI-CF — — —

Age in years 10.2 10.5 7.2 7.5 — — —

LCI2.5 9.06 8.66 11.8 9.86 10.3a 10.7a 7.4a 8.4a <7.1 (ULN)b

Sweat chloride [mmol/L] 84 102 110 115 103a 91.5a 50a 34.5a <30c

nPD Right Left Right Left Right Left Right Left

Basic potential [mV] −51 −28 −32 −41 −17 −40 −4 −28 −42.2d −41.7d −28d −26.4d −16.8e

Amiloride response [mV] 47 27 30 28 17 32 4 28 24.8d 30.3d 15.1d 11.4d 7.7e

Cumulative depolarization response to chloride-
free solution and isoproterenol [mV]

0 0 −5 −2 0 −1 −1 −2 −1.1d −0.3d −9.9d −10.6d −18.3e

Sermet Score −2.4 −1.4 −0.9 −1.2 −0.85 −1.5 −0.1 −1.3 −1.1d −1.5d 0.4d 0.6d > 0.27e

ICM

Response to forskolin/IBMX and carbachol
[μA/cm2]

6 4.4 5 4.5 −1.9d −4.4d 59.1d 63.3d 108f

SST

β-adrenergic sweat rate [nL/min] 0.07 0.23 0.06 0.22 0.006g 0.017g 0.44g

a(Graeber et al., 2022).
b(Wyler et al., 2021).
c(De Boeck et al., 2006).
d(Graeber et al., 2022).
e(Sermet-Gaudelus et al., 2010).
f(Minso et al., 2020).
g(Pallenberg et al., 2022).
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3.3 Measurement of intestinal CFTR function
in rectal biopsies

In intestinal current measurement (ICM), CFTR function in rectal
tissue biopsies was quantified by the response to forskolin/IBMX and
carbachol in μA/cm2. Prior to ETI, stimulation with forskolin/IBMX
and carbachol induced cumulative ion currents of 6 μA/cm2 in the
biopsies of B1 and 5 μA/cm2 in the biopsies of B2. Compared to our data
from 68 healthy controls with a median response to forskolin/IBMX
and carbachol of 108 μA/cm2 (IQR: 63–198 μA/cm2, Minso et al., 2020)
and our data from pwCF with one or two p.Phe508del alleles with a
median response of −1.9 and −4.4 µA/cm2 (Graeber et al., 2022;
Table 1), the brothers presented typical responses in the CF range.
Thus, there was no evidence of CFTR-mediated chloride secretion in
the intestinal epithelium at baseline. After 4 months of therapy with
ETI, stimulation with forskolin/IBMX and carbachol induced
cumulative ionic currents of 4.4 μA/cm2 in the biopsies of B1 and
4.5 µA/cm2 in the biopsies of B2, concluding in no improvement of
CFTR-function in the intestinal epithelium (Figure 1G).

3.4 Effect of ETI on the β-adrenergic sweat
rate

In the secretory epithelium of the sweat gland, following β-
adrenergic stimulation with concomitant cholinergic inhibition by

atropine, CFTR-mediated sweat secretion is detected as a direct
indicator of CFTR function (Sato and Sato, 1984; Wine, 2022). In
contrast, determination of chloride concentration in the sweat
indicates the capacity for CFTR-mediated chloride reabsorption
in the excretory duct of the sweat gland. We used the
AutoBuSTeD software for automated processing of sweat bubble
formation and our previously published protocol to analyze sweat
rates in nL/min (Figure 2). Our reference values for pwCF with one
or two p.Phe508del alleles (median 0.006 nL/min; IQR 0–0.027 nL/
min) and healthy controls (median 0.44 nL/min; IQR 0.34–0.48 nL/
min) determined the CF range (Table 1). A cut-off value as
calculated by ROC analysis between these two reference cohorts
of 0.16 nL/min was used to discriminate between normal and
impaired CFTR function (Pallenberg et al., 2022). Prior to ETI,
both brothers showed a β-adrenergic sweat rate in the upper CF
range (B1: 0.07 nL/min, B2: 0.06 nL/min), indicating impaired but
residual CFTR function in the sweat gland. Therapy with ETI led to a
significant increase and normalization of β-adrenergic sweat rates to
0.23 nL/min (B1) and 0.22 nL/min (B2) (Figures 1H, 2).

4 Discussion

This case of the two brothers with the rare and, in part,
previously uncharacterized CFTR splice mutations showed a
divergence of responses in CFTR biomarkers to ETI which,

FIGURE 2
Sweat bubble formation after β-adrenergic stimulation of the skin at baseline (A,B) and under ETI (C,D) in brother 1 (B1, left column) and brother 2
(B2, right column). Each dot represents themedian bubble volume per time point as calculated by the AutoBuSTeD software (Pallenberg et al., 2022). The
line shows the linear correlation, the slope corresponds to the sweat rate in nL/min.
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particularly in the sweat gland, was antagonistic to the findings of
pwCF with one or two p.Phe508del alleles. Functional CFTR
analysis prior to ETI showed no CFTR function in the
respiratory (nPD) and intestinal (ICM) epithelia and in the sweat
gland reabsorptive duct (QPIT) in either brother. In contrast, β-
adrenergic stimulated, CFTR-mediated sweat secretion (SST) was
detectable in the CF range. Under ETI, both brothers continued to
exhibit high sweat chloride concentration in QPIT, a low total
chloride response in ICM, evidence of low residual CFTR
function in the respiratory epithelia (nPD), but normalized β-
adrenergically stimulated production of primary sweat.

Our results indicate organ-specific differences in the expression
of CFTR and consecutive responses to ETI of the c.165-2A>G/
c.273+1G>C CFTR genotype. Prior to ETI, functional CFTR was
detectable only in the secretory epithelium of the sweat gland by SST.
ETI normalized CFTR function in the secretory apparatus of the
sweat gland, whereas CFTR function in the sweat duct as assessed by
QPIT and respiratory epithelium improved poorly or not at all.

The c.165-2A>G mutation affects the canonical splice acceptor site
preceding exon 3 and the c.273+1 mutation affects the canonical splice
donor site following exon 3. Thus, bothmutations are expected to induce
exon 3 skipping as the major consequence as it has been demonstrated
for c.273+1G>C in the respiratory epithelium of a c.273+1G>C/
p.Phe508del compound heterozygous individual with CF (Dörk et al.,
1993). However, the c.165-2A>G/c.273+1G>C compound heterozygous
brothers showed subtle residual CFTR function in the respiratory
epithelium and substantial residual CFTR function in the secretory
coil. Since β-adrenergically stimulated chloride secretion in the secretory
coil of the sweat gland is exclusively executed by CFTR and is not
substituted by any other ion channel (Wine, 2022), we can conclude that
chloride secretion was mediated by one or more CFTRmRNA isoforms
that confer residual CFTR activity. The use of cryptic splice sitesmay lead
to a non-canonical CFTR mRNA isoform. A cryptic exon is known in
intron 3 flanked by almost perfect acceptor and donor splice sites, but it
encodes two termination codons so that no functional CFTR activity can
be expected from this CFTR mRNA isoform (Will et al., 1994).
Alternatively, minute amounts of full-length CFTR mRNA transcript
may be produced if the splice mutations are somewhat leaky. This
scenario may not sound plausible by first glance. However, exon
skipping as the only consequence of canonical splice site mutations
flanking exon 3 has been observed in compound heterozygous patients
who carry a class II or a class IVmissense mutation in trans (Dörk et al.,
1993; Bienvenu et al., 1994). In contrast, since conception the two
brothers are compound heterozygous for two class I splice sitemutations
that target the same exon. Thus, the spontaneous rescue of some
functional CFTR activity from two class I mutations is not unlikely:
we have investigated CFTR biomarkers in a singular case of a compound
heterozygous patient for two non-sense mutations who demonstrated
CFTR activity in the ICM (Tümmler, 2019). This index case taught us
that not all carriers of two class I mutations lack CFTR activity.

This showcase illustrates that although high-throughput screening
ofCFTRmutations in recombinant cell lines allows proper classification
of mutation phenotypes, and standard cell culture assays can predict
rare CFTRmutation response to highly effective CFTRmodulation, the
outcome is not necessarily predictive of individual patient response to
CFTRmodulators in vivo. In summary, we provided evidence that some
patients with class 1 CFTR mutations may benefit from ETI. Hence,
when it comes to the issue whether rare or ultra-rare mutations will be

responsive to CFTR modulators like ETI, the individual subject should
be assessed in vivo with CFTR biomarkers prior and during treatment
with the medication.
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