6 research outputs found

    Patient safety culture and associated factors among nurses working at public hospitals in Gamo Zone, Southern Ethiopia

    No full text
    Abstract Background Patient safety culture is the prevention of errors and adverse effects to patients associated with health care delivery. It is a vital component in the provision of quality care. In healthcare settings where there is a safety culture, the people (providers, staff, administrators, and patients/families) are engaged, encouraged, and supported to make care safer. Though it is an essential component in the provision of quality care, little is known about its level, contributory, and hindering factors from the nurses’ perspectives. This study aimed to assess patient safety culture and associated factors among nurses working at public Hospitals in Gamo Zone, Southern Ethiopia. Methods This institution-based cross-sectional study was conducted among 398 nurses working at public hospitals in Gamo Zone. Data were collected by pretested, well-structured self-administered questionnaire from June 1 to 30, 2022. The collected data were checked, coded, and entered into Epi-data version 4.6.0.2 and were exported to SPSS version 25 for analyses. Bivariable and multivariable logistic regression was done to identify independent factors associated with patients’ safety culture. Results This study revealed that 202(50.8%), 95% CI: (46%—56%) of the participants had indicated good patient safety culture. From factors analysis, having an educational status of a bachelor’s degree and above [AOR = 2.26, 95%CI: (1.13—4.52)], working in a surgical ward [AOR = 5.48, 95%CI: (1.96—15.34)], not being blamed when medical errors happened [AOR = 3.60, 95%CI: (1.82 – 7.14)], and working 40 up to 49 h per week [AOR = 0.30, 95%CI: (0.13 – 0.74)] were identified to be significantly associated with good patient safety culture. Conclusion Based on the study findings, it could be observed that good patient safety culture was indicated only by half of the study participants. Implementing actions that support dimensions of patient safety culture, and creating opportunities for continuous educational advancement is recommended. Moreover, Hospital administrators, nurses’ directors, and healthcare policy-makers should work in collaboration to improve the patient safety culture, and also it would be better to create a blame-free environment to promote event reporting practices

    Effects of iron supplementation on cognitive development in school-age children : systematic review and meta-analysis

    No full text
    Background: Iron deficiency is negatively associated with children’s cognitive development. Evidence showed that iron supplementation improves cognitive development. Nearly 50% of anemia is caused by iron deficiency. Anemia affects more school-age children, at an age where their brain development continues. The aim of this systematic review and meta-analysis is to review the evidence from published randomized controlled trials to evaluate the effects of iron supplementation on cognitive development and function among school-age children. Method: Five databases including MEDLINE, EMBASE, Scopus, Web of Science and CENTRAL were used to search for articles on April 20th, 2021. The search was reconducted on October 13th, 2022 to retrieve new records. Studies were eligible if they included school children 6–12 years of age, were randomized controlled trials, and if they tested iron supplementation and measured cognitive development. Result: Thirteen articles were included in the systematic review. Overall, iron supplementation significantly improved intelligence (standardized mean difference, 95% confidence interval) (SMD 0.46, 95%CI: 0.19, 0.73, P<0.001), attention and concentration (SMD 0.44, 95%CI: 0.07, 0.81, P = 0.02) and memory (SMD 0.44, 95%CI: 0.21, 0.67, P <0.001) of school-age children. There was no significant effect of iron supplementation on school achievement of school-age children (SMD 0.06, 95%CI: -0.15, 0.26, P = 0.56). In a subgroup analysis, iron-supplemented children who were anemic at baseline had had better outcomes of intelligence (SMD 0.79, 95%CI: 0.41, 1.16, P = 0.001) and memory (SMD 0.47, 95%CI: 0.13, 0.81; P = 0.006). Conclusion: Iron supplementation has a significant positive effect on the intelligence, attention and concentration, and the memory of school-age children but there was no evidence on the effect of iron supplementation on their school achievement

    Effectiveness of intermittent iron and high-dose vitamin A supplementation on cognitive development of school children in southern Ethiopia: a randomized placebo-controlled trial.

    No full text
    Background: Iron is an essential mineral whose deficiency results in cognitive alteration, impaired emotional behaviors, and altered myelination and neurotransmission. In animal models, it has been shown that vitamin A (VA) could affect cognition. Objectives: The study aimed to evaluate the effectiveness of intermittent iron and VA supplementation on cognitive development of schoolchildren, and to assess the interaction between these supplementations. Methods: Considering a 2 × 2 factorial design, 504 children were randomly assigned to 1 of the 4 arms: placebo VA and placebo iron supplement; high-dose vitamin VA and placebo iron supplement; iron supplement and placebo VA; and iron and high-dose vitamin VA supplements. Cognitive development was assessed using Raven\u27s Coloured Progressive Matrices, digit span, Tower of London, and visual search tasks. Results: The mean [± standard deviation (SD)] age of the enrolled children was 9.6 (±1.6) y. One-fifth of the children had iron deficiency or anemia, whereas 2.9%, 3.9%, and 12.1% of children had low iron stores, iron deficiency anemia, and VA deficiency, respectively. Intermittent iron supplementation did not result in any significant improvement of children\u27s cognitive development and had a negative effect on the performance index of the visual search task compared with placebo (-0.17 SD, 95% confidence interval: -0.32, -0.02). Effects were evident among children with stunting, thinness, or children coming from understimulating home environments. High-dose VA supplementation resulted in a significant improvement of digit span z-score with a mean difference of 0.30 SD (95% confidence interval: 0.14, 0.46) compared with placebo VA. VA had a more beneficial impact for girls, children infected with helminths, and those from food secure households. Conclusion: In a population where the prevalence of iron deficiency is low, intermittent iron supplementation did not have any or negative effect on the child\u27s cognitive development outcomes. Conversely, VA supplementation improved the child\u27s working memory

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    No full text
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (73.0-81.3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods: For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding: Bill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore