339 research outputs found

    Couplet scoring for research based assessment instruments

    Full text link
    Contemporary content-focused research-based assessment instruments typically use instrument items (i.e., questions) as the unit of assessment for instrument scoring, reporting, and validation. However, traditional item-based scoring has a number of limitations, including several arising from the use of the common assessment development conventions of single-construct items, unidimensionality, and single-correct-answer items. Couplet scoring, introduced in this paper, employs the couplet as an alternative unit of assessment, where a couplet is essentially an item viewed and scored through the lens of a specific assessment objective (AO). With couplet scoring, a single item may have more than one AO and therefore more than one couplet. In this paper, we outline the limitations of traditional item scoring, introduce couplet scoring and discuss its affordances (especially as they relate to limitations of item scoring), and use a recently developed content RBAI to ground our discussion.Comment: 13 pages, 2 figure

    Latent NOTCH3 epitopes unmasked in CADASIL and regulated by protein redox state

    Get PDF
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL is caused by more than a hundred NOTCH3 mutations. Virtually all encoded mutant proteins contain an odd number of cysteines. As such, structural changes in NOTCH3 may be the primary molecular abnormality in CADASIL. Thus, we sought evidence for structurally altered NOTCH3 protein in CADASIL tissue. Four antibodies were raised in rabbits against two non-overlapping N-terminal NOTCH3 sequences. These reagents were used in immunohistochemical experiments to detect epitopes in post-mortem CADASIL brains (n=8), control brains, and cells overexpressing NOTCH3. To determine the biochemical nature of NOTCH3 epitopes, we used these antibodies to probe pure NOTCH3-Fc fusion proteins treated with acid, urea, guanidinium, ionic detergents, acrylamide, and thiol- and phosphorus-based reductants. All antibodies avidly stained arteries in 8 of 8 CADASIL brain samples. The most prominent staining was in degenerating media of leptomeningeal arteries and sclerotic penetrating vessels. Normal appearing vessels from control brains were not reactive. Antibodies did not react with cultured cells overexpressing NOTCH3 or with purified NOTCH3-Fc protein. Furthermore, treatment of pure protein with acid, chaotropic denaturants, alkylators, and detergents failed to unmask N-terminal NOTCH3 epitopes. Antibodies, however, recognized novel N-terminal epitopes in purified NOTCH3-Fc protein treated with three different reductants (DTT, beta-mercaptoethanol, and TCEP). We conclude that CADASIL arteries feature latent N-terminal NOTCH3 epitopes, suggesting the first evidence in vivo of NOTCH3 structural alterations

    Survey of physics reasoning on uncertainty concepts in experiments: an assessment of measurement uncertainty for introductory physics labs

    Full text link
    Measurement uncertainty is a critical feature of experimental research in the physical sciences, and the concepts and practices surrounding measurement uncertainty are important components of physics lab courses. However, there has not been a broadly applicable, research-based assessment tool that allows physics instructors to easily measure students' knowledge of measurement uncertainty concepts and practices. To address this need, we employed Evidence-Centered Design to create the Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE). SPRUCE is a pre-post assessment instrument intended for use in introductory (first- and second-year) physics lab courses to help instructors and researchers identify student strengths and challenges with measurement uncertainty. In this paper, we discuss the development of SPRUCE's assessment items guided by Evidence-Centered Design, focusing on how instructors' and researchers' assessment priorities were incorporated into the assessment items and how students' reasoning from pilot testing informed decisions around item answer options.Comment: 23 pages, 11 figures, submitted as part of the Physical Review Physics Education Research Focused Collection on Instructional Labs: Improving Traditions and New Direction

    Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.

    Get PDF
    Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain

    The organization of the transcriptional network in specific neuronal classes

    Get PDF
    Genome-wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems-level analysis of microarray data from single neuronal populations using weighted gene co-expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co-expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co-expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin-1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level

    Familial Creutzfeldt-Jakob Disease with V180I Mutation

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is an uncommon neurodegenerative disorder with an incidence of 1 per 1000,000 per year typically characterized by rapidly progressive dementia, ataxia, myoclonus and behavioral changes. Genetic prion diseases, which develop due to a mutations in the prion protein gene (PRNP), account for an estimated 10 to 15% of all CJD cases. We report a 75-yr-old woman with familial CJD carrying a V180I mutation which features late onset, slow progression, no periodic sharp wave complexes on electroencephalography, and extensive cortical ribboning with spared the cerebellum and the medial occipital lobes posterior to the parieto-occipital sulcus on MRI. To our knowledge, this is the first documented case of a point mutation at codon 180 in South Korea

    The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors

    Get PDF
    The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders

    Seizure-related 6 homolog like 2 autoimmunity: Neurologic syndrome and antibody effects

    Get PDF
    Objective: To describe the clinical syndrome of 4 new patients with seizure-related 6 homolog like 2 antibodies (SEZ6L2-abs), study the antibody characteristics, and evaluate their effects on neuronal cultures. Methods: SEZ6L2-abs were initially identified in serum and CSF of a patient with cerebellar ataxia by immunohistochemistry on rat brain sections and immunoprecipitation from rat cerebellar neurons. We used a cell-based assay (CBA) of HEK293 cells transfected with SEZ6L2 to test the serum of 95 patients with unclassified neuropil antibodies, 331 with different neurologic disorders, and 10 healthy subjects. Additional studies included characterization of immunoglobulin G (IgG) subclasses and the effects of SEZ6L2-abs on cultures of rat hippocampal neurons. Results: In addition to the index patient, SEZ6L2-abs were identified by CBA in 3/95 patients with unclassified neuropil antibodies but in none of the 341 controls. The median age of the 4 patients was 62 years (range: 54-69 years), and 2 were female. Patients presented with subacute gait ataxia, dysarthria, and mild extrapyramidal symptoms. Initial brain MRI was normal, and CSF pleocytosis was found in only 1 patient. None improved with immunotherapy. SEZ6L2-abs recognized conformational epitopes. IgG4 SEZ6L2-abs were found in all 4 patients, and it was the predominant subclass in 2. SEZ6L2-abs did not alter the number of total or synaptic SEZ6L2 or the AMPA glutamate receptor 1 (GluA1) clusters on the surface of hippocampal neurons. Conclusions: SEZ6L2-abs associate with a subacute cerebellar syndrome with frequent extrapyramidal symptoms. The potential pathogenic effect of the antibodies is not mediated by internalization of the antigen
    corecore