74 research outputs found

    Influence of the Potential Carbon Sources for Field Denitrification Beds on Their Microbial Diversity and the Fate of Carbon and Nitrate

    Get PDF
    Nitrogen based eutrophication of ecosystems is a global problem that gains momentum through a growing global population. The water quality of nitrate or ammonium contaminated rivers and streams cannot always be amended in centralized waste water treatment plants. Field denitrification plants were suggested as a solution for a decentralized reduction of nitrate to dinitrogen. Here, stable and cheap organic carbon sources serve as carbon and electron source for a microbial community. Still, our knowledge on the impact of these organic carbon sources on the development and diversity of these cultures is sparse. Moreover, the stability of these denitrification plants at different nitrate loading rates especially in the higher concentration regime were not tested so far. In this study, we compare the fate of carbon and nitrogen as well as the microbial community of wood pellet (WP) (pressed sawdust), wheat straw, and wood chips (WC) based laboratory denitrification reactors. Our study reveals that the diversity and composition of the community is strongly dependent on the carbon source. The diversity decreased in the order WC, wheat straw, and WPs. The three reactor types were characterized by different nitrate reduction kinetics and were affected differently by high nitrate loading rates. While the nitrate reduction kinetics were negatively influenced by higher nitrate doses in the wheat straw reactors, WPs as carbon source sustained the opposite trend and WC lead to an overall slower but concentration independent nitrate reduction rate. Counterintuitively, the concentration of soluble organic carbon was highest in the WP reactors but methane emission was not detectable. This is corroborated by the microbial diversity data in which methanogenic species were highly underrepresented compared to the other two reactor types. In contrary, the methane emissions in the wheat straw and WC reactors were comparable to each other

    Efficient Bioelectrochemical Conversion of Industrial Wastewater by Specific Strain Isolation and Community Adaptation

    Get PDF
    The aim of this study was the development of a specifically adapted microbial community for the removal of organic carbon from an industrial wastewater using a bioelectrochemical system. In a first step, ferric iron reducing microorganisms were isolated from the examined industrial wastewater. In a second step, it was tested to what extent these isolates or a cocultivation of the isolates with the exoelectrogenic model organism Geobacter sulfurreducens (G. sulfurreducens) were able to eliminate organic carbon from the wastewater. To establish a stable biofilm on the anode and to analyze the performance of the system, the experiments were conducted first under batch-mode conditions for 21 days. Since the removal of organic carbon was relatively low in the batch system, a similar experiment was conducted under continuous-mode conditions for 65 days, including a slow transition from synthetic medium to industrial wastewater as carbon and electron source and variations in the flow rate of the medium. The overall performance of the system was strongly increased in the continuous- compared to the batch-mode reactor and the highest average current density (1,368 mA/m2) and Coulombic efficiency (54.9%) was measured in the continuous-mode reactor inoculated with the coculture consisting of the new isolates and G. sulfurreducens. The equivalently inoculated batch-mode system produced only 82-fold lower current densities, which were accompanied by 42-fold lower Coulombic efficiencies

    Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism

    Get PDF
    Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold

    Electron transfer of extremophiles in bioelectrochemical systems

    Get PDF
    The interaction of bacteria and archaea with electrodes is a relatively new research field which spans from fundamental to applied research and influences interdisciplinary research in the fields of microbiology, biochemistry, biotechnology as well as process engineering. Although a substantial understanding of electron transfer processes between microbes and anodes and between microbes and cathodes has been achieved in mesophilic organisms, the mechanisms used by microbes under extremophilic conditions are still in the early stages of discovery. Here, we review our current knowledge on the biochemical solutions that evolved for the interaction of extremophilic organisms with electrodes. To this end, the available knowledge on pure cultures of extremophilic microorganisms has been compiled and the study has been extended with the help of bioinformatic analyses on the potential distribution of different electron transfer mechanisms in extremophilic microorganisms

    Improving the Cathodic Biofilm Growth Capabilities of Kyrpidia spormannii EA-1 by Undirected Mutagenesis

    Get PDF
    The biotechnological usage of carbon dioxide has become a relevant aim for future processes. Microbial electrosynthesis is a rather new technique to energize biological CO2_{2} fixation with the advantage to establish a continuous process based on a cathodic biofilm that is supplied with renewable electrical energy as electron and energy source. In this study, the recently characterized cathodic biofilm forming microorganism Kyrpidia spormannii strain EA-1 was used in an adaptive laboratory evolution experiment to enhance its cathodic biofilm growth capabilities. At the end of the experiment, the adapted cathodic population exhibited an up to fourfold higher biofilm accumulation rate, as well as faster substratum coverage and a more uniform biofilm morphology compared to the progenitor strain. Genomic variant analysis revealed a genomically heterogeneous population with genetic variations occurring to various extends throughout the community. Via the conducted analysis we identified possible targets for future genetic engineering with the aim to further optimize cathodic growth. Moreover, the results assist in elucidating the underlying processes that enable cathodic biofilm formation

    Exploring the Effects of bolA in Biofilm Formation and Current Generation by Shewanella oneidensis MR-1

    Get PDF
    Microbial electrochemical technologies (METs) have emerged in recent years as a promising alternative green source of energy, with microbes consuming organic matter to produce energy or valuable byproducts. It is the ability of performing extracellular electron transfer that allows these microbes to exchange electrons with an electrode in these systems. The low levels of current achieved have been the limiting factor for the large-scale application of METs. Shewanella oneidensis MR-1 is one of the most studied electroactive organisms regarding extracellular electron transfer, and it has been shown that biofilm formation is a key factor for current generation. The transcription factor bolA has been identified as a central player in biofilm formation in other organisms, with ist overexpression leading to increased biofilm. In this work we explore the effect of this gene in biofilm formation and current production by S. oneidensis MR-1. Our results demonstrate that an increased biofilm formation and consequent current generation was achieved by the overexpression of this gene. This information is crucial to optimize electroactive organisms toward their practical application in METs

    Extracellular reduction of solid electron acceptors by Shewanella oneidensis

    Get PDF
    Shewanella oneidensis is the best understood model organism for the study of dissimilatory iron reduction. This review focuses on the current state of our knowledge regarding this extracellular respiratory process and highlights its physiologic, regulatory and biochemical requirements. It seems that we have widely understood how respiratory electrons can reach the cell surface and what the minimal set of electron transport proteins to the cell surface is. Nevertheless, even after decades of work in different research groups around the globe there are still several important questions that were not answered yet. In particular, the physiology of this organism, the possible evolutionary benefit of some responses to anoxic conditions, as well as the exact mechanism of electron transfer onto solid electron acceptors are yet to be addressed. The elucidation of these questions will be a great challenge for future work and important for the application of extracellular respiration in biotechnological processes

    Soluble versions of outer membrane cytochromes function as exporters for heterologously produced cargo proteins

    Get PDF
    This study reveals that it is possible to secrete truncated versions of outer membrane cytochromes into the culture supernatant and that these proteins can provide a basis for the export of heterologously produced proteins. Different soluble and truncated versions of the outer membrane cytochrome MtrF were analyzed for their suitability to be secreted. A protein version with a very short truncation of the N-terminus to remove the recognition sequence for the addition of a lipid anchor is secreted efficiently to the culture supernatant, and moreover this protein could be further truncated by a deletion of 160 amino acid and still is detectable in the supernatant. By coupling a cellulase to this soluble outer membrane cytochrome, the export efficiency was measured by means of relative cellulase activity. We conclude that outer membrane cytochromes of S. oneidensis can be applied as transporters for the export of target proteins into the medium using the type II secretion pathway

    Bioplastikproduktion mithilfe eines extremophilen kathodischen Biofilms

    Get PDF
    As the atmospheric CO2 concentrations are increasing, its usage as biotechnological substrate becomes a focus area of applied scientists. As a rather new technique to energize the process of CO2 fixation, microbial electrosynthesis offers the advantage to establish continuous processes based on a cathodic biofilm that is supplied with electrical energy provided by renewable resources. Here we present the cathodic biofilm growth of Kyrpidia spormannii, a recently isolated thermophilic organism that is naturally capable of producing the biodegradable biopolymer polyhydroxybutyrate (PHB)

    Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime

    Get PDF
    Wastewater treatment using aerobic granular sludge has gained increasing interest due to its advantages compared to conventional activated sludge. The technology allows simultaneous removal of organic carbon, nitrogen, and phosphorus in a single reactor system and is independent of space-intensive settling tanks. However, due to the microscale, an analysis of processes and microbial population along the radius of granules is challenging. Here, we introduce a model system for aerobic granular sludge on a small scale by using a machine-assisted microfluidic cultivation platform. With an implemented logic module that controls solenoid valves, we realized alternating oxic hunger and anoxic feeding phases for the biofilms growing within. Sampling during ongoing anoxic cultivation directly from the cultivation channel was achieved with a robotic sampling device. Analysis of the biofilms was conducted using optical coherence tomography, fluorescence in situ hybridization, and amplicon sequencing. Using this setup, it was possible to significantly enrich the percentage of polyphosphate-accumulating organisms (PAO) belonging to the family Rhodocyclaceae in the community compared to the starting inoculum. With the aid of this miniature model system, it is now possible to investigate the influence of a multitude of process parameters in a highly parallel way to understand and efficiently optimize aerobic granular sludge-based wastewater treatment systems
    corecore