8 research outputs found

    Ultra high-resolution biomechanics suggest that substructures within insect mechanosensors decisively affect their sensitivity

    Get PDF
    Insect load sensors, called campaniform sensilla (CS), measure strain changes within the cuticle of appendages. This mechanotransduction provides the neuromuscular system with feedback for posture and locomotion. Owing to their diverse morphology and arrangement, CS can encode different strain directions. We used nano-computed tomography and finite-element analysis to investigate how different CS morphologies within one location-the femoral CS field of the leg in the fruit fly Drosophila-interact under load. By investigating the influence of CS substructures' material properties during simulated limb displacement with naturalistic forces, we could show that CS substructures (i.e. socket and collar) influence strain distribution throughout the whole CS field. Altered socket and collar elastic moduli resulted in 5% relative differences in displacement, and the artificial removal of all sockets caused differences greater than 20% in cap displacement. Apparently, CS sockets support the distribution of distal strain to more proximal CS, while collars alter CS displacement more locally. Harder sockets can increase or decrease CS displacement depending on sensor location. Furthermore, high-resolution imaging revealed that sockets are interconnected in subcuticular rows. In summary, the sensitivity of individual CS is dependent on the configuration of other CS and their substructures

    Location and arrangement of campaniform sensilla in Drosophila melanogaster

    Get PDF
    Sensory systems provide input to motor networks on the state of the body and environment. One such sensory system in insects is the campaniform sensilla (CS), which detect deformations of the exoskeleton arising from resisted movements or external perturbations. When physical strain is applied to the cuticle, CS external structures are compressed, leading to transduction in an internal sensory neuron. In Drosophila melanogaster, the distribution of CS on the exoskeleton has not been comprehensively described. To investigate CS number, location, spatial arrangement, and potential differences between individuals, we compared the front, middle, and hind legs of multiple flies using scanning electron microscopy. Additionally, we imaged the entire body surface to confirm known CS locations. On the legs, the number and relative arrangement of CS varied between individuals, and single CS of corresponding segments showed characteristic differences between legs. This knowledge is fundamental for studying the relevance of cuticular strain information within the complex neuromuscular networks controlling posture and movement. This comprehensive account of all D. melanogaster CS helps set the stage for experimental investigations into their responsivity, sensitivity, and roles in sensory acquisition and motor control in a light-weight model organism

    Raw Data for Mechanical Modeling of Mechanosensitive Insect Strain Sensors as a Tool to Investigate Exoskeletal Interfaces

    No full text
    Applied forces and measured strains from a 3D printed resin model of the femoral field of companiform sensilla from the fruit fly Drosophila melanogaster. For a full description, please see the abstract of the associated paper:Dinges GF, Zyhowski WP, Lucci A, Friend J, Szczecinski NS (2023) Mechanical modeling of mechanosensitive insect strain sensors as a tool to investigate exoskeletal interfaces. Bioinspiration & Biomimetics

    Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking

    No full text
    Legged locomotion in terrestrial animals is often essential for mating and survival, and locomotor behavior must be robust and adaptable to be successful. This adaptability is largely provided by proprioceptors monitoring positions and movements of body parts and providing feedback to other components of locomotor networks. In insects, proprioceptive chordotonal organs span joints and encode parameters of relative movement between segments. Previous studies have used whole-organ ablation, reduced preparations or broad physiological manipulations to impair the function of the femoral chordotonal organ ( fCO), which monitors the femur-tibia joint, and have demonstrated its contribution to interleg coordination and walking behavior. The fCO in Drosophila melanogaster comprises groups of neurons that differ in their morphology and encoding properties (club, hook, claw); sub-population-level manipulations of fCO function have not been methodologically accessible. Here, we took advantage of the genetic toolkit available in D. melanogaster to identify sub-populations of fCO neurons and used transient optogenetic inhibition to investigate their roles in locomotor coordination. Our findings demonstrate that optogenetic inhibition of a subset of club and hook neurons replicates the effects of inhibiting the whole fCO; when inhibited alone, however, the individual subset types did not strongly affect spatial aspects of single-leg kinematics. Moreover, fCO subsets seem to play only a minor role in interleg temporal coordination. Thus, the fCO contains functionally distinct subgroups, and this functional classification may differ from those based on anatomy and encoding properties; this should be investigated in future studies of proprioceptors and their involvement in locomotor networks

    Gradients in mechanotransduction of force and body weight in insects

    No full text
    Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton. The sites of mechanotransduction (cuticular caps) were imaged by light and confocal microscopy in four species (stick insects, cockroaches, blow flies and Drosophila). The numbers of receptors and cap diameters were determined in projection images. Similar groups of receptors are present in the legs of each species (flies lack Group 2 on the anterior trochanter). The number of receptors is generally related to the body weight but similar numbers are found in blow flies and Drosophila, despite a 30 fold difference in their weight. Imaging data indicate that the gradient (range) of cap sizes may more closely correlate with the body weight: the range of cap sizes is larger in blow flies than in Drosophila but similar to that found in juvenile cockroaches. These studies support the idea that morphological properties of force-detecting sensory receptors in the legs may be tuned to reflect the body weight. (C) 2020 The Authors. Published by Elsevier Ltd

    7. Quellen- und Literaturverzeichnis

    No full text
    corecore