1,591 research outputs found

    Light-Cone Quantization of the Liouville Model

    Full text link
    We present the quantization of the Liouville model defined in light-cone coordinates in (1,1) signature space. We take advantage of the representation of the Liouville field by the free field of the Backl\"{u}nd transformation and adapt the approch by Braaten, Curtright and Thorn. Quantum operators of the Liouville field +ϕ\partial_{+}\phi, ϕ\partial_{-}\phi, egϕe^{g\phi}, e2gϕe^{2g\phi} are constructed consistently in terms of the free field. The Liouville model field theory space is found to be restricted to the sector with field momentum P+=PP_{+}=-P_{-}, P+>0P_{+}> 0 , which is a closed subspace for the Liouville theory operator algebra.Comment: 16 p, EFI-92-6

    N=4N=4 super KdV equation

    Get PDF
    We construct N=4N=4 supersymmetric KdV equation as a hamiltonian flow on the N=4  SU(2)N=4\;SU(2) super Virasoro algebra. The N=4N=4 KdV superfield, the hamiltonian and the related Poisson structure are concisely formulated in 1D  N=41D \;N=4 harmonic superspace. The most general hamiltonian is shown to necessarily involve SU(2)SU(2) breaking parameters which are combined in a traceless rank 2 SU(2)SU(2) tensor. First nontrivial conserved charges of N=4N=4 super KdV (of dimensions 2 and 4) are found to exist if and only if the SU(2)SU(2) breaking tensor is a bilinear of some SU(2)SU(2) vector with a fixed length proportional to the inverse of the central charge of N=4  SU(2)N=4\;SU(2) algebra. After the reduction to N=2N=2 this restricted version of N=4N=4 super KdV goes over to the a=4a=4 integrable case of N=2N=2 super KdV and so is expected to be integrable. We show that it is bi-hamiltonian like its N=2N=2 prototype.Comment: 11 pages, preprint ENSLAPP-L-415-9

    Spontaneous superconductivity and optical properties of high-Tc cuprates

    Full text link
    We suggest that the high temperature superconductivity in cuprate compounds may emerge due to interaction between copper-oxygen layers mediated by in-plane plasmons. The strength of the interaction is determined by the c-axis geometry and by the ab-plane optical properties. Without making reference to any particular in-plane mechanism of superconductivity, we show that the interlayer interaction favors spontaneous appearance of the superconductivity in the layers. At a qualitative level the model describes correctly the dependence of the transition temperature on the interlayer distance, and on the number of adjacent layers in multilayered homologous compounds. Moreover, the model has a potential to explain (i) a mismatch between the optimal doping levels for critical temperature and superconducting density and (ii) a universal scaling relation between the dc-conductivity, the superfluid density, and the superconducting transition temperature.Comment: 4.4 pages, 2 figures; v2 matches the published version (clarifying remarks and references are added

    A Note on Background (In)dependence

    Full text link
    In general quantum systems there are two kinds of spacetime modes, those that fluctuate and those that do not. Fluctuating modes have normalizable wavefunctions. In the context of 2D gravity and ``non-critical'' string theory these are called macroscopic states. The theory is independent of the initial Euclidean background values of these modes. Non-fluctuating modes have non-normalizable wavefunctions and correspond to microscopic states. The theory depends on the background value of these non-fluctuating modes, at least to all orders in perturbation theory. They are superselection parameters and should not be minimized over. Such superselection parameters are well known in field theory. Examples in string theory include the couplings tkt_k (including the cosmological constant) in the matrix models and the mass of the two-dimensional Euclidean black hole. We use our analysis to argue for the finiteness of the string perturbation expansion around these backgrounds.Comment: 16 page

    Correlation functions in super Liouville theory

    Full text link
    We calculate three- and four-point functions in super Liouville theory coupled to super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. After calculating the amplitudes, we formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case, the amplitudes being of the same form as those of the bosonic case.Comment: 11 page

    Soliton quantization and internal symmetry

    Full text link
    We apply the method of collective coordinate quantization to a model of solitons in two spacetime dimensions with a global U(1)U(1) symmetry. In particular we consider the dynamics of the charged states associated with rotational excitations of the soliton in the internal space and their interactions with the quanta of the background field (mesons). By solving a system of coupled saddle-point equations we effectively sum all tree-graphs contributing to the one-point Green's function of the meson field in the background of a rotating soliton. We find that the resulting one-point function evaluated between soliton states of definite U(1)U(1) charge exhibits a pole on the meson mass shell and we extract the corresponding S-matrix element for the decay of an excited state via the emission of a single meson using the standard LSZ reduction formula. This S-matrix element has a natural interpretation in terms of an effective Lagrangian for the charged soliton states with an explicit Yukawa coupling to the meson field. We calculate the leading-order semi-classical decay width of the excited soliton states discuss the consequences of these results for the hadronic decay of the Δ\Delta resonance in the Skyrme model.Comment: 23 pages, LA-UR-93-299

    Conference Discussion of the Nuclear Force

    Full text link
    Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (i) What does each approach (chiral effective field theory, large Nc, and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (ii) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (iii) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward.Comment: Discussion at the 21st European Conference on Few Body Problems (EFP21) held at Salamanca, Spain, 30 Aug - 3 Sept 201

    Resolving the Large-N Nuclear Potential Puzzle

    Get PDF
    The large NcN_c nuclear potential puzzle arose because three- and higher-meson exchange contributions to the nucleon-nucleon potential did not automatically yield cancellations that make these contributions consistent with the general large NcN_c scaling rules for the potential. Here it is proposed that the resolution to this puzzle is that the scaling rules only apply for energy-independent potentials while all of the cases with apparent inconsistencies were for energy-dependent potentials. It is shown explicitly how energy-dependent potentials can have radically different large N behavior than an equivalent energy-independent one. One class of three-meson graphs is computed in which the contribution to the energy-independent potential is consistent with the general large N rules even though the energy-dependent potential is not.Comment: Corrections to the toy mode

    Toda Fields on Riemann Surfaces: remarks on the Miura transformation

    Full text link
    We point out that the Miura transformation is related to a holomorphic foliation in a relative flag manifold over a Riemann Surface. Certain differential operators corresponding to a free field description of WW--algebras are thus interpreted as partial connections associated to the foliation.Comment: AmsLatex 1.1, 10 page

    Domain Walls in a FRW Universe

    Full text link
    We solve the equations of motion for a scalar field with domain wall boundary conditions in a Friedmann-Robertson-Walker (FRW) spacetime. We find (in agreement with Basu and Vilenkin) that no domain wall solutions exist in de Sitter spacetime for h = H/m >= 1/2, where H is the Hubble parameter and m is the scalar mass. In the general FRW case we develop a systematic perturbative expansion in h to arrive at an approximate solution to the field equations. We calculate the energy momentum tensor of the domain wall configuration, and show that the energy density can become negative at the core of the defect for some values of the non-minimal coupling parameter xi. We develop a translationally invariant theory for fluctuations of the wall, obtain the effective Lagrangian for these fluctuations, and quantize them using the Bunch-Davies vacuum in the de Sitter case. Unlike previous analyses, we find that the fluctuations act as zero-mass (as opposed to tachyonic) modes. This allows us to calculate the distortion and the normal-normal correlators for the surface. The normal-normal correlator decreases logarithmically with the distance between points for large times and distances, indicating that the interface becomes rougher than in Minkowski spacetime.Comment: 23 pages, LaTeX, 7 figures using epsf.tex. Now auto-generates P
    corecore