50 research outputs found

    Breast cancer cells adapt contractile forces to overcome steric hindrance

    Get PDF
    Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance

    Viscoelastic properties of suspended cells measured with shear flow deformation cytometry

    Get PDF
    Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 µm wide microfluidic channel. The fluid shear stress induces large, ear ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe [1] that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell-cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks

    Interobserver agreement on definition of the target volume in stereotactic radiotherapy for pancreatic adenocarcinoma using different imaging modalities

    Full text link
    PURPOSE The aim of this study was to evaluate interobserver agreement (IOA) on target volume definition for pancreatic cancer (PACA) within the Radiosurgery and Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (DEGRO) and to identify the influence of imaging modalities on the definition of the target volumes. METHODS Two cases of locally advanced PACA and one local recurrence were selected from a large SBRT database. Delineation was based on either a planning 4D CT with or without (w/wo) IV contrast, w/wo PET/CT, and w/wo diagnostic MRI. Novel compared to other studies, a combination of four metrics was used to integrate several aspects of target volume segmentation: the Dice coefficient (DSC), the Hausdorff distance (HD), the probabilistic distance (PBD), and the volumetric similarity (VS). RESULTS For all three GTVs, the median DSC was 0.75 (range 0.17-0.95), the median HD 15 (range 3.22-67.11) mm, the median PBD 0.33 (range 0.06-4.86), and the median VS was 0.88 (range 0.31-1). For ITVs and PTVs the results were similar. When comparing the imaging modalities for delineation, the best agreement for the GTV was achieved using PET/CT, and for the ITV and PTV using 4D PET/CT, in treatment position with abdominal compression. CONCLUSION Overall, there was good GTV agreement (DSC). Combined metrics appeared to allow a more valid detection of interobserver variation. For SBRT, either 4D PET/CT or 3D PET/CT in treatment position with abdominal compression leads to better agreement and should be considered as a very useful imaging modality for the definition of treatment volumes in pancreatic SBRT. Contouring does not appear to be the weakest link in the treatment planning chain of SBRT for PACA

    Desenvolvimento e sustentabilidade na fruticultura de exportação.

    Get PDF
    A fruticultura brasileira de exportação de frutas frescas e de sucos, com base em ciência, organização e políticas públicas, tem apresentado um desenvolvimento expressivo ao longo das últimas 3 décadas. Avanços tecnológicos nas fases de produção e pós-colheita determinaram ganhos elevados em produtividade, qualidade e sustentabilidade socioeconômica e ambiental, com destaque para os efeitos poupa-terra e para a economia no uso de recursos naturaisbitstream/item/222983/1/Desenvolvimento-e-sustentabilidade-na-fruticultura-2021.pd

    Local Cooperativity in an Amyloidogenic State of Human Lysozyme Observed at Atomic Resolution

    Get PDF
    The partial unfolding of human lysozyme underlies its conversion from the soluble state into amyloid fibrils observed in a fatal hereditary form of systemic amyloidosis. To understand the molecular origins of the disease, it is critical to characterize the structural and physicochemical properties of the amyloidogenic states of the protein. Here we provide a high-resolution view of the unfolding process at low pH for three different lysozyme variants, the wild-type protein and the mutants I56T and I59T, which show variable stabilities and propensities to aggregate in vitro. Using a range of biophysical techniques that includes differential scanning calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate that thermal unfolding under amyloidogenic solution conditions involves a cooperative loss of native tertiary structure, followed by progressive unfolding of a compact, molten globule-like denatured state ensemble as the temperature is increased. The width of the temperature window over which the denatured ensemble progressively unfolds correlates with the relative amyloidogenicity and stability of these variants, and the region of lysozyme that unfolds first maps to that which forms the core of the amyloid fibrils formed under similar conditions. Together, these results present a coherent picture at atomic resolution of the initial events underlying amyloid formation by a globular protein

    The origin of traveling waves in an emperor penguin huddle

    Get PDF
    Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as −50 °C and wind speeds of up to 200 km h−1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat

    Mechanical plasticity of cells

    No full text

    Phase transitions in huddling emperor penguins

    No full text
    International audienc

    Population of nonnative States of lysozyme variants drives amyloid fibril formation.

    Full text link
    The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases
    corecore