924 research outputs found
HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection
We consider classification tasks in the regime of scarce labeled training
data in high dimensional feature space, where specific expert knowledge is also
available. We propose a new hybrid optimization algorithm that solves the
elastic-net support vector machine (SVM) through an alternating direction
method of multipliers in the first phase, followed by an interior-point method
for the classical SVM in the second phase. Both SVM formulations are adapted to
knowledge incorporation. Our proposed algorithm addresses the challenges of
automatic feature selection, high optimization accuracy, and algorithmic
flexibility for taking advantage of prior knowledge. We demonstrate the
effectiveness and efficiency of our algorithm and compare it with existing
methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8)
Conference, 201
Developing a clinical trial unit to advance research in an academic institution
AbstractResearch, clinical care, and education are the three cornerstones of academic health centers in the United States. The research climate has always been riddled with ebbs and flows, depending on funding availability. During a time of reduced funding, the number and scope of research studies have been reduced, and in some instances, a field of study has been eliminated. Recent reductions in the research funding landscape have led institutions to explore new ways to continue supporting research. Mayo Clinic in Rochester, MN has developed a clinical trial unit within the Department of Medicine, which provides shared resources for many researchers and serves as a solution for training and mentoring new investigators and study teams. By building on existing infrastructure and providing supplemental resources to existing research, the Department of Medicine clinical trial unit has evolved into an effective mechanism for conducting research. This article discusses the creation of a central unit to provide research support in clinical trials and presents the advantages, disadvantages, and required building blocks for such a unit
Analysis of DNA Methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation
The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS) to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92%) occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance) of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.Author Summary DNA methylation is a dynamic epigenetic mark that is essential for mammalian organismal development. DNA methylation levels can be influenced by environment, a chromosome's parental origin, and genome sequence. In this study, we evaluated the impact that DNA sequence has on DNA methylation by analyzing methylation levels in a three-generation family as well as unrelated individuals. By following DNA methylation patterns through the family along with nearby SNPs, we found that allelic differences between chromosomes play a much larger role in determining DNA methylation than the parental origin of the chromosome, indicating that DNA sequence has a larger impact on DNA methylation than gametic imprinting. We also found that allelic differences in DNA methylation found in the family can also be observed in unrelated individuals. In fact, the majority of variation in DNA methylation can be explained by genotype. Our results emphasize the importance of genome sequence in setting patterns of DNA methylation and indicate that genotype will need to be taken into account when assessing DNA methylation in the context of disease
Allele-specific distribution of RNA polymerase II on female X chromosomes
While the distribution of RNA polymerase II (PolII) in a variety of complex genomes is correlated with gene expression, the presence of PolII at a gene does not necessarily indicate active expression. Various patterns of PolII binding have been described genome wide; however, whether or not PolII binds at transcriptionally inactive sites remains uncertain. The two X chromosomes in female cells in mammals present an opportunity to examine each of the two alleles of a given locus in both active and inactive states, depending on which X chromosome is silenced by X chromosome inactivation. Here, we investigated PolII occupancy and expression of the associated genes across the active (Xa) and inactive (Xi) X chromosomes in human female cells to elucidate the relationship of gene expression and PolII binding. We find that, while PolII in the pseudoautosomal region occupies both chromosomes at similar levels, it is significantly biased toward the Xa throughout the rest of the chromosome. The general paucity of PolII on the Xi notwithstanding, detectable (albeit significantly reduced) binding can be observed, especially on the evolutionarily younger short arm of the X. PolII levels at genes that escape inactivation correlate with the levels of their expression; however, additional PolII sites can be found at apparently silenced regions, suggesting the possibility of a subset of genes on the Xi that are poised for expression. Consistent with this hypothesis, we show that a high proportion of genes associated with PolII-accessible sites, while silenced in GM12878, are expressed in other female cell lines
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Evidence of Associations Between Feto-Maternal Vitamin D Status, Cord Parathyroid Hormone and Bone-Specific Alkaline Phosphatase, and Newborn Whole Body Bone Mineral Content
In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status (25(OH)D), parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose of the present study was to investigate the relationships between maternal and cord 25(OH)D, PTH, BALP, and WBBMC in newborns in a multiethnic population in Oakland, California and to evaluate the predictive value of the biochemical indices as indicators of WBBMC. Maternal and cord blood were collected from 80 mother-infant pairs and infant WBBMC was measured by dual energy X-ray absorptiometry 8–21 days post-birth. Cord PTH and BALP were each inversely correlated with infant WBBMC (r = −0.28, p = 0.01 and r = −0.26, p = 0.02) and with cord 25(OH)D (r = −0.24, p = 0.03 and r = −0.34, p = 0.002), while cord 25(OH)D and unadjusted or weight-adjusted WBBMC were not significantly correlated with one other. In multivariate regression modeling, infant WBBMC was most strongly predicted by infant weight (p < 0.0001), while either PTH or BALP contributed modestly but significantly to the model (p = 0.006 and p = 0.03 respectively). Cord 25(OH)D was not a significant predictor of infant WBBMC. This study provides evidence of associations between feto-maternal 25(OH)D, cord PTH and BALP, and early infant WBBMC, though neither feto-maternal 25(OH)D nor the measured biochemical indices were suitable indicators of WBBMC
Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis
Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis
Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase
Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency
Inotersen preserves or improves quality of life in hereditary transthyretin amyloidosis
Objective: To examine the impact on quality of life (QOL) of patients with hATTR amyloidosis with polyneuropathy treated with inotersen (Tegsediâ„¢) versus placebo.
Methods: Data were from the NEURO-TTR trial (ClinicalTrials.gov Identifier: NCT01737398), a phase 3, multinational, randomized, double-blind, placebo-controlled study of inotersen in patients with hATTR amyloidosis with polyneuropathy. At baseline and week 66, QOL measures-the Norfolk-QOL-Diabetic Neuropathy (DN) questionnaire and SF-36v2® Health Survey (SF-36v2)-were assessed. Treatment differences in mean changes in QOL from baseline to week 66 were tested using mixed-effect models with repeated measures. Responder analyses compared the percentages of patients whose QOL meaningfully improved or worsened from baseline to week 66 in inotersen and placebo arms. Descriptive analysis of item responses examined treatment differences in specific activities and functions at week 66.
Results: Statistically significant mean differences between treatment arms were observed for three of five Norfolk-QOL-DN domains and five of eight SF-36v2 domains, with better outcomes for inotersen than placebo in physical functioning, activities of daily living, neuropathic symptoms, pain, role limitations due to health problems, and social functioning. A larger percentage of patients in the inotersen arm than the placebo arm showed preservation or improvement in Norfolk-QOL-DN and SF-36v2 scores from baseline to week 66. Responses at week 66 showed more substantial problems with daily activities and functioning for patients in the placebo arm than in the inotersen arm.
Conclusion: Patients with hATTR amyloidosis with polyneuropathy treated with inotersen showed preserved or improved QOL at 66 weeks compared to those who received placebo.This research was funded by Akcea Therapeutics and Ionis Pharmaceuticals, Incinfo:eu-repo/semantics/publishedVersio
- …