1,661 research outputs found

    Formation of ions and radicals from icy grains in comets

    Get PDF
    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets

    Survey of damage mechanisms on PVD coated HSS hobs used in Swedish gear manufacturing industry

    Get PDF
    Gear hobbing is widely used for production of cylindrical gears in the Swedish transmission industry. The hob, usually consisting of a homogenous HSS (High Speed Steel) body coated with a ceramic PVD (Physical Vapour Deposition) coating, is designed for regrinding and recoating several times without affecting its cutting geometries. Efficient usage of the tool, considering production costs and gear quality, requires reconditioning before wear starts to affect the gear quality negatively and certainly before tool wear renders reconditioning impossible. Hobs of today generally lack in reliability, making it difficult to judge when they have to be taken out for reconditioning. This work presents a survey of wear as observed on today’s state of the art hobs used by Swedish gear manufactures. It aims to identify damage mechanisms and the common problems in order to enable future production of more reliable hobs. The tools were temporarily borrowed from the production and the analyses were made non-destructively using optical microscopes. This was complemented by destructive cross- sectional analysis on two of the hobs.  Wear was most commonly located on the rake faces and the cutting edges of the cutting teeth. It mainly propagates by discrete fractures which appear to originate at local defects in the coating or at the interface. High intrinsic stress in the coating likely promotes coating spallation and accelerates the wear of the cutting edge

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Fully abstract denotational semantics for concurrent Prolog

    Get PDF

    Challenges to Political Campaigns in the Media: Commercialization, Framing, and Personalization

    Full text link
    Due to an increasing interdependence between mass communication and political processes, the role of media in political campaigns generated much debate.In this paper, we identify commercialization, framing and personalization as three key challenges to the way the media face political campaigns. We theoretically derive three hypotheses, one for each of those challenges. Based on data from expert interviews as well as from a content analysis, the validity of each hypothesis is surveyed. The results do not confi rm an assumed lack of providing campaign relevant news in the media coverage as proposed by considering the media as purely commercially driven organizations. Further they demonstrate the use of different frames for the presentation of competing positions in a political debate. Finally, personalization appears as an important strategy of news selection, focusing on a small number of prominent actors

    Electron beam profile imaging in the presence of coherent optical radiation effects

    Full text link
    High-brightness electron beams with low energy spread at existing and future x-ray free-electron lasers are affected by various collective beam self-interactions and microbunching instabilities. The corresponding coherent optical radiation effects, e.g., coherent optical transition radiation, render electron beam profile imaging impossible and become a serious issue for all kinds of electron beam diagnostics using imaging screens. Furthermore, coherent optical radiation effects can also be related to intrinsically ultrashort electron bunches or the existence of ultrashort spikes inside the electron bunches. In this paper, we discuss methods to suppress coherent optical radiation effects both by electron beam profile imaging in dispersive beamlines and by using scintillation imaging screens in combination with separation techniques. The suppression of coherent optical emission in dispersive beamlines is shown by analytical calculations, numerical simulations, and measurements. Transverse and longitudinal electron beam profile measurements in the presence of coherent optical radiation effects in non-dispersive beamlines are demonstrated by applying a temporal separation technique.Comment: 12 pages, 11 figures, submitted to Phys. Rev. ST Accel. Beam

    Discordant Supramolecular Fibres Reversibly Depolymerised by Temperature and Light

    Get PDF
    Synthetic stimuli responsive supramolecular polymers attract increasing interest for their ability to mimic the unique properties of natural assemblies. Here we focus on the well-studied benzene-1,3,5-tricarboxamide (BTA) motif, and substitute it with two (S)-3,7-dimethyloctyl groups and an azobenzene photoswitch. We demonstrate the UV (λ=365 nm) induced depolymerisation of the helical hydrogen-bonded polymers in methylcyclohexane (MCH) through circular dichroism and UV-vis spectroscopy in dilute solution (15 Όm), and NMR and iPAINT super-resolution microscopy in concentrated solution (300 Όm). The superstructure can be regenerated after thermal depolymerization, whilst repeated depolymerisation can be reversed without degradation by irradiating at λ=455 nm. Molecular dynamics simulations show that the most energetically favourable configuration for these polymers in MCH is a left-handed helical network of hydrogen-bonds between the BTA cores surrounded by two right-handed helices of azobenzenes. The responsiveness to two orthogonal triggers across a broad concentration range holds promise for use in, for example, photo-responsive gelation

    Enzyme evolution: innovation is easy, optimization is complicated

    Get PDF
    Enzymes have been evolving to catalyze new chemical reactions for billions of years, and will continue to do so for billions more. Here, we review examples in which evolutionary biochemists have used big data and high-throughput experimental tools to shed new light on the enormous functional diversity of extant enzymes, and the evolutionary processes that gave rise to it. We discuss the role that gene loss has played in enzyme evolution, as well as the more familiar processes of gene duplication and divergence. We also review insightful studies that relate not only catalytic activity, but also a host of other biophysical and cellular parameters, to organismal fitness. Finally, we provide an updated perspective on protein engineering, based on our new-found appreciation that most enzymes are sloppy and mediocre

    Time resolved phase space tomography at flash using a transverse deflecting RF-structure

    Full text link
    • 

    corecore