

Fully abstract denotational semantics for concurrent Prolog

Citation for published version (APA):
Gerth, R. T., Codish, M., Lichtenstein, Y., & Shapiro, E. (1987). Fully abstract denotational semantics for
concurrent Prolog. (Computing science notes; Vol. 8721). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/88aa75f3-df90-437e-a5e1-155cabf746ce

Fully abstract denotational semantics

for concurrent PROLOG

by

R. Gerth

M. Codish

Y. Lichtenstein

E. Shapiro

87/21

december 1987

COMPUTING SCIENCE NOTES

TItis is a series of notes of the Computing Science Section of the Department

of Mathematics and Computing Science of Eindhoven University of Technol

ogy.

Since many of these notes are preliminary versions or may be published else

where. they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB Eindhoven

The Netherlands

All rights reserved

editor: F .A.J. van Neerven

Fully Abstract Denotational Semantics
for Concurrent Prolog

Rob Gerth',
Eindhoven University of Technology!

Mike Codish, Yossi Lichtenstein, Ehud Shapiro
Weizmann Institute of Science2

extended abstract

Version: December 24, 1987

Abstract. We develop a. denotational, hence, compositional semantics for a subset of Concurrent Prolog

and relate it to an operational one, tha.t makes divergence and the resultant substitutions of finite com

putations together with the termination mode - success, failure or deadlock - observable. Rela.tive to

this notion of observation we prove that the denotational semantics is fully abstract in the sense that it

records the minimal amount of extra information beyond the observables to make it compositional. Full

abstraction is an important property because it quantifies the information that one needs in order to reason

about individual program-parts independently. It is the first such result in the area of concurrent logic

programming.

1. Introduction

Logic programming is based on the idea that first order logic can be used as a programming
language. Its origins lie in Robinson's resolution principle [Rob65], an inference rule that is emi

nently suitable for mechanization, and in Kowalski's and Colmerauer's [Kow74, Co173] realization

that logical deduction has a procedural interpretation that makes it effective as a programming
language.

A typical logic programming clause, a f- bl ,· .. ,bn , has as logical or declarative meaning "a is

satisfied whenever all bi'S are satisfied" . Such a clause also has a procedural reading: "to solve the

goal a (i.e., to satisfy a,) solve the goals b!, ... , bn ." Together with resolution - or rather unification

- as the computational mechanism) this procedural interpretation yields efficient programming
languages, as the various Prolog dialects show.

A third interpretation of a logic clause is possible: the process reading. The atom, a is now
interpreted as a process that may spawn off (instances of) the body-atoms b! , ... , bn with which it is

replaced. Clearly, this interpretation is geared towards parallel and distributed implementations .

• The author is working in and partially supported by ESPRIT project 937, "Debugging and Specification of Real

Time Ada Embedded Systems (DESCARTES)" .

1 Department of Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the

Netherlands.

2 Department of Applied Mathematics, Weizmann Institute of Science, P.O.Box 26, Rehovot 76100, Israel.

For "pure" logic programs the declarative, procedural and process readings all coincide; see,

e.g., [Llo84]. Most concurrent logic programming languages, like Prolog itself, introduce extra,
logical constructs for efficiency and expressiveness reasons. Specifically, concurrent logic program

ming languages all have constructs that allow control information to flow between goals or processes
so that the reduction of goals can be synchronized or suspended. Such constructs, on the one hand,
are essential for reducing the otherwise intractable computational effort of reducing all processes
in parallel, but on the other hand, destroy the correspondence between the declarative meaning of
a concurrent logic program and its operational or process meaning. There is an analogy here with

the introductio;' of the cut-operator in Prolog [Ll084].

Strictly speaking, such languages no longer belong to the realm of logic programming. They
correspond more closely to imperative languages, although the basic computation step still is the
resolution of clauses, and a successful computation provides a proof of the goal statement from the

clauses of the program.

As with imperative languages, most of the concurrent logic languages have had there meaning
defined by an operational semantics. There are good reasons not to be satisfied with this state of
affairs and ask for denotational semantics as well. Apart from the theoretician's argument - that
they are obviously good to have - we state the following practical reasons

to localize the debugging [Lic87], analysis and transformation of programs [GCS88], and

to aid distributed implementations [TSS87].

In either case, it is necessary to consider program parts independently from the other parts
and, 'hence, to determine in what way such parts can be influenced (and can influence). It is
precisely the compositional nature of a denotational semantics that makes it important in this
context.

We develop in this paper a denotational semantics for a subset of Concurrent Prolog [Sha86],
Theoretical Flat Concurrent Prolog, TFCP. The starting point is a decision on what one wants
to observe or know about program executions. As usual, we codify this in an operational seman

tics, O. Our notion of observation is a minimal one: we observe the resultant substitutions of
finite computations with their "type", success, failure or deadlock, and whether diveryence occurs.
Moreover, in this paper we limit ourselves to uniprocessor implementations and, hence, allow at

most one reduction step at a time.

The next step is to construct a denotational semantics from which not only the operational

semantics can be reconstructed, but which also gives independent meaning to the syntactic building

blocks of programs. In general this will entail extending the recorded behaviour of programs beyond
what we want to observe.

It is not only a theoretical nicety to ask for the minimum amount of extra information about
programs, upon which a compositional semantics can be based. This is of obvious importance, too,
if the semantics forms the theoretical basis for debugging tools and distributed implementations.
In other words, we want a denotational semantics that is fully abstract with respect to 0 3 .

The fully abstract semantics developed here is based on the divergence set semantics of Brookes

3 Full abstraction is usually fannulated differently. The present characterization as the "smallest morphism above

0" is an equivalent one; see e.g., [HGR87].

- 2 -

et al. for TCSP [BHR84]. Hence, the meaning of a program is expressed in terms of the sequences
of interactions, i.e., substitutions, that programs participate in, including both the substitutions
that a program produces and the substitutions that it assumes its environment produces. So-called
divergence traces J if any, express at which points a divergent computation can start. Moreover J

because at some points, progress in a program-part may depend on the environment, the meaning
of a program also quantifies the dependencies on the environment. These take the form of failure

sets which collect substitutions that will either suspend the program or will not release it from
suspension.

In fact, we treat a TFCP program as an ordinary parallel program: substitutions are treated as
assignments to variables that are shared between the goal processes and which may cause different
processes to synchronize.

The only other work that we know of in this area is a recent paper by Kok [Kok88]. He gives
a denotational semantics for a larger set of Concurrent Prolog than we do, using a Banach space

of trees as domain. Unlike us, he does not relate his model to any operational semantics and his
model is far from being fully abstract relative to our operational semantics.

Section 2 of the paper introduces the operational semantics. The domain and the denotational
semantics is the subject of Section 3. Section 4 shows full abstraction and Section 5 contains some
final remarks.

For reasons of space, both the operational and the denotational semantics as presented in this

abstract ignore diveryences of programs. However, we have proven these results for the more general

case. The results and proofs will be included in the full paper

2. Concurrent Prolog and its Operational Semantics

2.1 Syntax

The notions of signature, E, terms, Tm(Var,E), atoms, At(Var,E',EP), substitutions, re
namings, most general unifiers, etcetera, are assumed to be understood. Their definitions and
other non-standard notation can be found in the appendix.

Concurrent Prolog extends logic programming with the notion of read-only variables as a
synchronization primitive and the commit operator which distinguishes between guard atoms and

the proper body atoms of a clause. Concurrent Prolog distinguishes between the writable occurrence
of a variable, X, and its read· only occurrence, X? The intension is that a program that needs X?
to be instantiated will suspend until its environment will instantiate a writable occurrence of X.

We restrict ourselves to the so-called flat subset of Concurrent Prolog in which the guard
atoms are constructed from a fixed set of test predicates, T.

Definition:

• For any set Var of variables, Var? = {X? I X E Var} and Vary = VarU Var?

• S = {u I u is a substitution on Vary and dome u) ~ Var}

• B = {17 E S 117 is idempotent}

• BI = {17 E S 1 'IX E dom(l7) d(I7(X)):5 I}

• 'R.={PEBlpisarenaming}

• if 17 E B and t E Tm(Va",,}:;) then tl7 is defined as usual except that

(X?)17 = {17(X)? if I7(X) EVa.
I7(X) otherwise

Definition: Flat Concurrent Prolog, FCPT,E; initialized programs, iFCPT,E

• A (flat) gnarded (T, }:;)-clause has the form a <- gl, ... , gm 1 bl , ... , bn , m, n ;:: 0 where
{a,bl> ... ,bn } £ At(Va",,}:;) and {gl, ... ,gm} £ At(Va",,}:;J,T). We call a the head,

gl, ... , gm the guard and bl , ... , bn the body of the clause. If n = 0, we take the body to
be true.

• An FCPT,E program is a finite set of flat guarded (T, }:;)-clauses.

• A program P E FCPT,E is called closed if every predicate in D' that occurs in P is also
defined in P, i.e., also occurs in the head of a clause in P.

• X E iFCPT,E iff 3P E FCPT,E, a E At(Va"" }:;)+ X = P; a

Such an initialized program is usually written as P, +- a.

In theoretical FCP, we give syntactic structure to programs and view them as the parallel

composition of a number of closed, independent sub-programs. In addition, a goal-list (or resolvent

as it is usually called), all .. " an, is interpreted in accordance with the process-reading of clauses

and, hence, is viewed as the parallel composition of processes. We do not make this explicit in the
syntax of the language.

Definition: Theoretical Flat Concurrent Prolog, TFCPT,E; initialized programs, iTFCPT,E

• TFCPT,E is the smallest set X such that

• P E X if P E FCPT,E, P is closed and every guarded clause in P is uniquely deter
mined by its head and guard4

• PI II P2 E X if PI> P2 E X and PI and P2 have no predicate symbols in common.

• iTFCPT,E is the smallest set X such that

• P; a E X if P E FCPT,E n TFCPT,E and P; a E iFCPT,E

• PI II P2 E X if PI, P2 E X and PI and P2 have no predicate symbols in common.

Observe that any predicate in a TFCP-program, P, inherits its definition from one of the

(closed) FCP sub-programs of P. As we will see, this means that parallel components can only

influence each other via the variable bindings they produce. Likewise for iTFCP-programs. We
feel that at this stage, it is a reasonable assumption to make.

We usually write TFCP instead of TFCPT,E, write C = H <- G 1 B for a guarded clause C
and often interpret a TFCP-program as just a collection of clauses.

4 This unique detennination is a non-essential assumption that makes the denotational semantics somewhat easier

to formulate.

- 4 -

To define the operational semantics we have to define read-only unification. Although p(X?)

and p(f(a)) will unify in the classical sense, they should not unify here, because X? can only
become instantiated through a writable occurrence of X. Such unification attempts will become

suspended. Moreover, successful unification depends on satisfaction of guards.

Definition: admissible substitutions, read.only mgu, mgu?5 .

• A substitution 0 E B is admissible for a term t E Tm(Va"" E) if X? E vars(t) =? X E

vars(t) holds for any X E dom(O). A substitution is admissible for an atom p(t" ... , t n) if
it is admissible for every t;.

• ,,: At(Vary, E, T)' -+ {true,false, suspend} is some fixed interpretation of guard atoms
such that ,,(e) = true.

• For a clause C == H +- G I B and an atom a

• mgu-(a, H) = {O E B lOis an mgu for {a = H}, and ran(O) n vars(a) = 0 }

Our definition of hiding, in section 3, requires the goal variables in mgu's to be in the
domain.

• 0 E mgu-(a, H) is admissible if 0 is admissible for a and for H.

{

0 if 0 E mgu- (a, H) is admissible and ".(GO) = true
(C) 3 fail if mgu-(a, H) = 0 or

• mgu? a, iffor all admissible 0 E mgu-(a, H), ".(GO) = false
suspend otherwise

Note that for t E {/ail,suspend}, if t E mgu?(a,C) then mgu?(a,C) is a singleton set.
The results of this paper are actually quite independent of any particular variant of (read-only)

unification. The only assumptions that we need to make, is that unification yields a substitution,
fail or suspend, that its yield only depends on ", a clanse and a head and that it yields suspend if
a read-only instance needs to be bound.

2.2 Operational Semantics

The operational semantics gives only minimal information about program executions. For

any finite computation it records the resultant substitution 0 together with the termination mode

- success, (0, ttl, deadlock, (0, dl), or fail, (0, if) - . This seems to be the minimal amount of
information that one would like to know about a program. With every program, P, we associate

a transition system, IIp as follows

Definition: Trnnsition system, IIp

Given a program P E TFCP, IIp = (Q, -), where

• Q = {(A; 0) I A is a multiset of atoms or A E {tt, dI, if}, 0 E B}.

• -+ £ Q x B x Q is defined as the smallest rela.tion such that:

• ({A" ... , A;, ... , An};O)~({(A" ... , Bp, ... ,An)oo}; 0000)

5 These definitions differ slightly from the ones used in FCP [Sha86]

- 5 -

for any C = H <- G 1 B E P and renaming p E 'R such that var.(C) ~ dom(p),
ran(p) n (var.(A" ... ,An) U dom(O» = 0 and U E mgu,(A" Cp) E B 6

• ({A" ... ,Ai>'" ,An};O)'!'(ff;O)

if A, '" true and for every clause C E P fail E mgu,(A"C).

• (A;O).!.(cII,O)

if 3A, E C A, '" true and VA, E A VC E P, A, '" true =? suspend E mgu,(A" C)

• (true, ... , true; O}.!.(tt; O)

• Seq(llp,q) = { (q,!.;,q'+l)'<a la<w, qo=q, qa=(R;O), RE{tt,ff,cII}}

Definition: Operational Semantics ~. or

For Prog = P,; adl·· '1IPn; an E iTFCPT,l:, let P = P, U ... U Pn and a = a" . .. , an. Then

• ~Progor = { (0 r vars(a), R) 13(q,!';'q'+')'<a E Seq(llp, (a; T», a < w, qa = (R; 0) }

3, Denotational Semantics

A compositional semantics has to give meaning to each individual program part, independent
from the environment consisting of the other parts. For TFCP this means that we have to give
meaning to the individual clauses of a program and hence to anticipate in these meanings the
possible substitutions that any environment may produce. In this sense, there is a close correspon
dence with ordinary eSP-like, concurrent languages. Here, too, meanings or denotations must
be expressed in terms of sequences of interactions - i.e., substitutions - differentiating between
input-substitutions, 01 , offered by the environment, and output-substitutions, (}o, offered by the

program part. This correspondence goes even further as we, too, have to describe the ways in which

a program depends on its environment in order to proceed - e.g., because a read-only variable
needs to be bound - .

3.1 The Domain

In fact, our semantics will be based on the failure set semantics for TCSP [BHR84]. So, a

program denotation is a set, F, of suspensions, (c,s). Each (c,s) records a computation sequence,

c, of input and output substitutions together with a set of substitutions, s, input of Done of which

will allow the program to produce any other output substitution.

Definition: Sequences, Suspensions

• Ba = {oa 10 E B}, a E {I,O}
for a = I (a = 0) B a is called the set of input (output) bindings.

• Let A ~ Bl U BO

6 As dorn(Ou) n ran(Ou) = 0, 00 u ex"I, and is equal 10 OU; see [LMM86].

- 6 -

• SEQ(A) = { og"or"··· '0;:' E A* I
IIi,j = l..n i # j =} dom(O,) n dom(Oj) = 0, }
Vi = l..n 00 0 ... 0 0, exists

• SEQ = SEQ(81 U 8°)

• If c = og" ... '0;:' E SeQ then 0, = 0000, 0 ... 0 On

• SUS1'= ftc,s) ICE SEQ, s ~ 8' or s E {ff,tt}}

Before we can define the denotational domain, we have to introduce renamings of suspensions.

Definition: renaming of suspensions
n

Let (c,s) E SUS1', c = of' .. ·o~'Oo'o. Let p E 'R. be such that vars(p) n (,U vars(O,) U
1;::;1

dom(O» = 0. Then (c,s)p is a renaming of (c,s) and defined as (c.p,sp)

Since 0° is the first substitution produced by a unification of the program that (c, s) is a
behaviour of, this definition mirrors the way that variables are renamed during actual computations.

Program denotations will be sets of suspensions. However, not every such set will be a program

denotation. In the definition below we will impose a number of closure conditions on these sets.

Their purpose is not so much to characterize precisely those sets that do obtain as program deno
tations, but rather to express the closure conditions that we need in the sequel. E.g., conditions

Ll and L2 allow us to use set inclusion as the ordering on the domain.

Definition: Denotational Domain, 'DeN

• 'DeN ~ 2SUS1' and F E 'DeN iff:

(Ll) (d) E F

(L2) (c'0,0) E F =} (c, 0) E F

(L3) (c,S)EF, ii~s =} (c,ii)EF

(L4) Vs' ~!'n s (c, s') E F =} (c, S) E F

(L5) Let (c,s) E F, (c,tt) rt F and 0 E 8'. Then

(c,s)EF, (c'01,0)EF, VOE8 (c'01'00,0) rtF =} (c,sU{O})EF

(L6) (c,s) E F =} (o,s) E F for any renaming (o,s) of(c,s).

(L7) (c'0,0) E F <==> (c'(0.pjI';;,0) E F for any 0 E 8 and some renaming, p, such

that vars(c'o) n dom(O.p) = 0

(LS) (c'OI'OI'<, s) E F <==> (c'(O 0 0)/'<, s) E F, provided 0, 0 E 8

(L9) (c,0)EF =} I{OE81(c'00,0)EF}\",I<l-toorF=SUS1'

The closure conditions Ll, "'J L4 are the standard ones, corresponding to the conditions NI,

... , N4 of [HGR84]). L5 adapts condition N5 to the asynchronous nature of "communication"

in TFCP. L6 is a compactness condition analogous to L4, and is needed to ensure continuity of

the restrict operator. It expresses the arbitrariness of renamings. L 7 and LS function in the full

abstraction proof. Bounded nondeterminism, finally, is expressed in condition L9. We take the

quotient with respect to :=::: so as to ignore the effect of renamings of variables.

Theorem:

D = ('DeN,~, 1.) with F ~ F' iff F ;2 F' and 1. = SUS1' is a complete partial order.

Proof: standard [BHR84].

3.2 The Equations

Technically speaking, the semantic equations pose fairly slandard problems. As stated earlier,

computations are modelled after the failure set model for TCSP [HGR84]. The "recursion skeleton"
of the semantics is analogous to, e.g., the one used by Joost Kok [Kok88] or by Neil Jones for

PROLOG in [Jon87]. There are two exceptions.

In the operational semantics, every unification induces a renaming of the spawned-off body

clauses. Since we a.im at full abstractness, the denotational semantics must mimic this. Indeed,
the equations are parametrized by three additional arguments: two renamings, used to rename the
goal and the clause it unifies with, and a set of fresh variables that newly constructed renamings

can rename to. An alternative would have been to use in both semantics a fixed renaming scheme.
We felt that it was preferable to keep the operational semantics as simple and clean as possible.

The second exception concerns the hiding of variables. The variables in the initial goal are
always visible, but a new variable becomes visible because it occurs in the binding to an already
visible variable (see the definition of closure below). This dynamic character makes the hide

operator more difficult to define.

We need some notation and auxiliary functions.

Definition: Let P be a TFCP program and F ~ SUS'P; let c = O'-c E SEQ and let 9 E

At(Va,,?, E)' .

• the closure of 9 with respect to c:

closure(g,c) = U{ v' E vars(vO,,) / v E vars(g),c' ~ c }

• input variables: input(c) = U{dom(O) /3Cl,C2 c = Cl-OI -C2}

• C r V is defined by a recursion on the length of c:

c r V = c, (Ol-C) r V = Ol-(C r V), (OO-c) r V = { ~Or ~)O-(c r V) ifO;iT
otherwise .

• suspended(g,P) = { s ~ 8 1
/ Vu E s VC E P Va E 9 suspend E mgu?(au,C) }

• c'F = {(c-c, s) / (c, s) E F} for c E SEQ

• PFC(F) is the smallest set X ;;, F satisfying Ll and L2.

Now, we can define the auxiliary functions, restrict(V, F), respectively, Fl " F 2 , that hide
variables in the suspension, F, respectively, parallelly compose the suspensions Fl and F 2 .

Definition: restrict and "

• restrict: 2 Var x vt:/lf -+ vt:/lf

restrictev, F) = PFC (U { hideev, (c, s))

where

- 8 -

(c,s) E F and ~ 3c,(c,),<w E SEQ })
Vi < w: c, ~ CHI & (c-Cc,) E F & ,

hide(V, c-Cc,) = hide(V, c-c)

{

{(e rv,s rV)}
• hide(V,(e,s)) = wher~ V = closure(V,c)

and V = Var \ Ivars(V, c) if input(c) n Ivar(V, c) = 0
o otherwise

I (V) {
1

3c1,0,c2 C=C100C2 }
• vars ,e = V

v E ran(O)\closure(V, c)
local variables

• II: 1)eN x 1)eN 1)eN

F, II F2 = {(c1I1c2, sll1s2) I (c" s,) E F" i = 1, 2}, where

• sollsl = sll1so, for s 'I ff slltt = s, sllff = ff, for So, s, ~ B' sollsl = So n SI

• colh = cdlco, <11< = <, for I E {I,O} O'"COIW"CI = O'"(colle,)

Lemma:

The functions restrict(V,·) and ·11· are well-defined and continuous. Also, ·11· is commutative
and associative.

Proof: See the full paper.

The semantics of a TFCP-program, P, wi! be given by PCP). It will be defined as a fixed
point involving auxiliary functions A and B that give meaning to atom-lists and individual atoms

relative to a program. We make use of program environments, eN'V, that record the meaning of
the program clauses (remember that tbey are identified by their head and guard):

eN'V: At(Vary, E) x At(Vary, E', T)* 2 Var x 'R x 'R B 1)eN

The types of the functions involved, are as follows:

P : TFCP eN'V program meaning

A : At(Vary, E)+ eN'V 2 Var X 'R X 'R B -+ 1)eN atom list

B : At(Vary, E) eN'V 2 Var X 'R X 'R B 1)eN single atom

We first define the meaning of TFCP-programs without parallel operators.

Definition: FCP-program meaning

Take P E TFCPT," n FCPT,,,. Let P == C" ... , Cn and P Var= vars(P), where C, == H, I B,

(and Hi == ai ~ gil,··. ,9imi' Bi == bil"", bin,}

• PCP) = n{CI/H
"

... ,Cn/Hn}, where
(C"""Cn) = pC""Cn. [A(B,)(P(P)), ... ,A(Bn)(P(P))]

• A(a" ... ,an)'lVpP = B(a1)'lViPP111"'1I B(an)'lVnpp., where

ran(p,) n ran(pj) 'I 0 ~ i = j, PI,." ,Pn E 'R, PVarU vars(a" ... ,an) ~ (l dom(p,),
•

V ran(p,) ~ V and Vi, ... , Vn is a partition of V\ V ran(p,) such that each If; is infinite.
• •

• B(a)'lVppO = restrict(vars(apO), F) where

{ I
s E suspended(apO, dom('l)), } U

• F = (f,S) '10 E s: dom(O) n dom(O) = 0, vars(O) n V = 0

{(f, ttl I a == true} U
{(f,ff) I a ~ true, VH E dome'll fail E mgu,(apO,H)} U
{OI:B(a)'lVpp(OoO) I OEB,dom(O)ndom(O) = 0,vars(O)nV=0 } U

- 9 -

{Oo:,,(H)Vpp(OoO) I OEmgu,(apO,Hp),OEB,HEdom(,,)}

Now, the semantics of a TFCP-program, P, II P2 is straightforwardly defined:

Definition: TFCP-program meaning

• P(P, II P2) = PCP,) U P(P2).

(Note that PCP,) and P(P2) have disjoint domains.)

Definition: Denotational semantics, U: iTFCPT,E -+ veN'

• [P, II P2] = [P,] II [P2]

• [P; a] = A(a)(P(P)) Var TTT

Theorem: well-definedness and continuity

The functions P, A, Band [-] are well-defined and continuous

Proof: Included in the full paper.

Finally, we can relate --(J. <>- and I·] as follows

Theorem: --(J. <>- = or 0 I,] where or: veN' -+ B X {tt, dI, If} is defined by

{ I {s ifsE{tt,lf} }
or(F) = (O"t) (c,s) E F, input(c) = 0, t = dI -J. 0

if 8 C;; B and 8 r

4. Full Abstraction

The last theorem of the previous section shows that the observables can be retrieved from the
program denotations: --(J. <>- = or 0 II But what is the status of those parts of the denotations

that or abstracts away from? We intend to prove that those parts are really necessary. Specifically,
any other denotational semantics from which the observables can be retrieved will have at least

as much information in its denotations as n has: [.] = [3 0 U for some [3, where [.J is any other
denotational semantics such that --(J. <>- = , 0 [-] for some ,.

There is a (folk?) theorem that links such an abstract semantics to the discriminatory power

of contexts: whenever [-] differentiates between two programs, P and Q, there must be another

program with a "hole", E(x), such that plugging in P and Q will result in an observable difference:
--(JE(P)<>- "I --(JE(Q)<>-. See, e.g., [HGR87].

In our case, the syntax of iTFCP suggests the following notion of contexts: E(x) E ContT,E
iff 3P, E iTFCPT,E' E(x) = P, II x and E' n E = 0.

Theorem: Abstractness of [-] w.r.t. --(J. <>-

Let var(.) E T be a unary predicate symbol such that .. (varO) is the characteristic predicate

of Va",. Then, for every P,Q E iTFCPT,E:

• [P]"I [Q] =? 3E(x) E ContT,E --(JE(P)<>-"I --(JE(Q)<>- (and E(P), E(Q) E iTFCPT,E)'

Note that we prove abstraction under an assumption about the available test-predicates, T.
We have no such resuit yet for arbitrary T.

- 10 -

Proof: sketch

Take some (c,s) E [P] \ [Q]. We only sketch the proof for the most complicated case, where

s # 0. The context, E(x), must somehow make the behaviour (c, s) possible - by producing
the necessary substitutions - and must be able to sense and make observable the fact whether

(c, s) has occurred or not. Assume for the moment that E(x) can sense when x has behaved

like (c,0). If, after having sensed that, E(x) would bind, say, true to the fresh variable success
and after that produce, non-deterministically, any of the substitutions in s 7 , then we would have

(0, dl) E ~E(P)~ for some ° E B with succesO = true. Strictly speaking, the context will sense

whether x behaves like (c, 0) or not, with c '" C ("'<; B x B is extended pointwise to sequences). This
is because a context cannot sense the renamings of variables as, e.g., in p(x) <- q(x). Condition

L6 ensures that we may ignore renarnings.

Now consider E(Q). If, after behaving like c, Q can do anything but suspend, we have obtained

an observable difference. Obviously, there is no reason why Q could not suspend as well. However,

if (c, 0) E [E(Q)] then Q cannot suspend immediately after E(x) produces some substitution in

•. If it could, then L5 and L3 would imply that (c,.) E [Q], which is untrue. In other words, if Q
suspends at all, it can only do so after having produced at least one extra output substitution.

To force an observable difference in this case, consider the set B = {O I (c-01-00 , 0) E F, ° E

.,0 E B}. By L9, B\", is finite. Now, if E(x) suspeuds until one of the substitutions in one of the

equivalence classes, [4>;], in B\", is produced and then fails, it will be able to fail Q before Q can

suspend: (0, t) E ~E(Q)~ for some 0 E B only if suceessO # true or t # dI.

The actual construction of the context is quite subtle and we will not be able to give all the
details here.

Let c = O;'-"'-O~" s = {O'I, ... ,O'd and B\",= {[4>,j, ... ,[4>mJ}. Let V be the variables in

the goals of both P and Q. Define V, as V and for i > 0, V;+1 = vars(VO.:,_ ... _.:;). I.e., V; are the

variables that could be affected "in step i". With each 9~i we associate a set of clauses, p!'. With

• and B we associate sets of clauses P, and PB. Basically, if I, = 0 then PP will fail if anything
but 0, is output. If I; = I then pl will produce the required input substitution. Similarly, P, will
produce any of the O'j and PB will await any of the 4>j and will then fail.

In the pseudo code below, ";" stands for sequentialization, which can be achieved by the stan

dard short circuit technique of A. Takeuchi [Sha86). Moreover, await(0) waits until the variables

in dom(O) are bound and fails if they are bound differently than in some 0 E [0); produce(O) pro
duces some 0 E [OJ; fail is a clause that fails; test(V) checks whether the variables in V are bound

to non-variables. The first three pseudo commands are FCP programs, while test({XI," ., Xl})
stands for the guard var(xI),"" var(xl)'

The environment is E(x) == U';I p/; UP, U PB ; el(Vl , success) II x, where

• pp == ei(V., success) - await(Oi)j ei(Vi+lJ success)

e,(V;+1, success) <- test(V;+rl I ei+l(V;+1, success)

• pl == e;(V; , success) <- test(V;) I produee(O,);ei+l(Vi+l,SUccess)

7 By L3 and L4 we may assume that s is finite.

- 11 -

en+1(Vn+1,true) +- produce(uk);enH

• PB _ en+2 +- await(¢,); fail

enH +- await(¢m); fail

As can be seen from the code, executing any of the fragments of E(,,) will result in more than
one unification and, hence, will produce substitutions that do not appear in (c, s). The closure
conditions L7 and L8 ensure that we can "expand" c to make room for the additional resolutions.

5. Conclusions and Further Work

We have developed, here, the first fully abstract semantics for any concurrent logic program
ming language. In doing so, we have consciously ignored the logic programming origins of FCP
and have treated it as just another concurrent language. It might come as a surprise to see that
standard modeling techniques, developed for CSP, apply in this context, too. The asynchronous
nature of the interaction of FCP processes does complicate things, as does unification as the bar

sic computation step. This can be seen from the full abstraction proof. The construction of the
context here is more cumbersome than for CSP, CCS or for DNP-R [HGR87].

We intend to extend our results to more general computational domains. In particular, we

want to have denotational models that correspond to step- semantics and to partial order semantics

for FCP; these semantics capture more of the behaviour of distributed implementations of FCP.

Finally, the resulting denotational semantics will be the starting point for proof systems and
verification and debugging tools for FCP.

Acknowledgements.

The first two authors thank each other's departments for their hospitality. We thank John
Gallagher and Daniel Szoke for their fruitful conunents.

6. References

[BHR84] Brookes, S.D., Hoare, C.A.R., Roscoe, W.; "A Theory of Communicating Sequential
Processes", JACM 31, pp.499-560, 1984.

[Co173] Colmerauer, A" Kanoui, H" Roussel, P., Pasera, R.; "Un Systeme de Communication
Homme-Machine en Fran~ais", Groupe de Recherche en Intelligence Artificielle, Univer
site d'Aix-Marseille, 1973.

[GCS88] Gallagher, J., Codish, M., Shapiro, E.; "Specialising Prolog and FCP Programs Using
Abstract Interpretation", to appear in New Generation Computing, special issue on
Partial Evaluation and Mixed Computation, 1988.

[HGR87] Huizing, C., Gerth, R., de Roever, W.P.; "Full Abstraction ofa Real-Time Denotational
Semantics for an OCCAM-like Language", Proc. 14th ACM POPL, pp.223-238, 1987.

- 12 -

[Jon87] Jones, N.; "A Semantics-Based Framework for the Abstract Interpretation of Prolog", in
Abstract Interpretation of Declarative Languages, Ellis-Horwood, 1987.

[Kok88] Kok, J.; "A Compositional Semantics for Concurrent Prolog", Proc. STACS, 1988.

[Kow74] Kowalksi, R.A.; "Predicate Logic as a Programming Language", Proc. IFIP74, pp.569-
574, 1974.

[Lic87] Lichtenstein, Y.; "Algorithmic Debugging of Flat Concurrent Prolog", M.Sc.Thesis, De
partment of Computer Science, Weizmann Institute of Science, 1987.

[Ll084] Lloyd, J.W.; "Foundations of Logic Programming", Springer Verlag, New York, 1984.

[LMM86] Lassez, J.-L., Maher, M.J., Mariott, K.; "Unification Revisited", IBM Thomas J. Watson
Research Center, 1986.

[Rob67] Robinson, J.A.; "A Machine-Oriented Logic Based on the Resolution Principle", JACM
12-1, pp.23-41,1967.

[Sha86] Shapiro, E.; "Concurrent Prolog: A Progress Report", in Fundamentals of Artificial
Intelligence, Springer Verlag, 1986.

[TSS87] Taylor, S., Safra, S., Shapiro, E.; "Parallel Execution of FCP", International Journal of
Parallel Programming, Vol. 15, No.3, pp.245-275, 1987.

7. Appendix

Let VaT denote some (countable) set of variables and E some first-order signature; E = D'UE!,

where D' collects the predicate-symbols of E and E! the function-symbols.

Terms and atoms over Var and E are defined as usual and are denoted by Tm(VaT, E) and
AI(VaT, E). Also, AI(VaT, E" E 2) denotes the set of atoms that take their predicate-symbols solely

from E2 . So, AI(Var, E) = AI(VaT, E!, EP).

Definition: depth of a tenn, d(t)

• d(t) = 0 for t E VarU E!,

• d(t) = 1 + max(d(t.), ... ,d(tn)) for t = p(t" ... , tn)

For any syntactic object, .p, vars(.p) stand for the set of variables occurring (free) in .p.

We often use sequences of objects. Then, 'V" denotes concatenation of two sequences, "c"
stands for the empty sequence and "CI ~ C2" means that Cl is a prefix of C2: 3 Cl Cl"Cl = C2.

Definition: substitutions

• A substitution on Var is a total function u: Var -+ Tm(Var, E} such that the set dom(u) =
{X E Varl u(X) '" X} is finite. The set dom(u) is the domain of the substitution u. We
let ran(u) = {vars(u(X)) I X E dom(u)}. The identity function on Var is called the
empty substitution and is denoted by T.

• A substitution p is a renaming if p(X) S;; VaT, for every X E VaT, dom(p) n ran(p} = 0,
and p is injective (on its domain dom(p)).

• For terms or atoms t, tu is defined inductively by Xu = u(X) and I(t" ... ,tn)u
I(t,u, ... , tnu). This generalizes to sets of terms or atoms in the obvious way.

- 13 -

• The composition of two substitutions <T and <p is defined by X (O"<p) = (X O")<p. A substitution
0" is idempotent if 0"0" = 0". The idempotent composition of two substitutions is defined by
0" 0 <p = 8 if 8 is idempotent and 3n ~ 0 (O"<p)n = 8, where ",n is defined by ",0 = T and
",n+1 = ",,,,n.

• A substitution, 01, is mOTe general than a substitution, fJ if there exists a substitution,

such that fJ = 01,.

• A substitution, u is a unifier for a set of equations, E = {at = 61, .. " an = bn}, where the
aitbi are atoms or terms, if aiD" = biu for i = l..n. We call iT a most general unifier, mgu,

for E, if u is more general than any other unifier for E.

• If 0" is a substitution and Viis a subset of V, then the restriction 0" r V' of 0" to Viis

defined by (0" r V')(X) = O"(X) for X E V' and (0" r V')(X) = X for X E V\V' . For a set

of substitutions s the restriction s r V is defined by s r V = {O" r V 10" E s}.

• If 0" is a substitution and p is a renaming tben the p-Tenaming of 0" is the substitution O".p
defined by ItX E dom(O") (Xp)O".p = XO"p. This generalizes to sequences of substitutions
in the obvious way.

• The equivalence relation ""~ B x B is defined by 8 "" ,p iff 3p E 1l 8p =,p. Note that only
the variables in the range of (J are renamed.

- 14 -

In this series appeared :

No. AuthOljs) Title

85/01 R.H. Mak The fonnal specification and derivation of

CMOS-circuits

85/02 W.M.C.J. van Overve1d On arithmetic operations with M-out-of-N-codes

85/03 W.JM. Lemmens Use of a computer for evaluation of flow films

85/04 T. Verhoeff Delay insensitive directed trace structures satisfy

H.M.J.L. Schols the foam rubber wrapper postulate

86/01 R. Koymans Specifying message passing and real-time

systems

86/02 G.A. Bussing ELISA, A language for fonnal specifications

K.M. vanHee of infonnation systems

M. Voomoeve

86/03 Rob Hoogerwoord Some reflections on the implementation

of trace structures

86/04 G.J. Houben The partition of an infonnation system in

J. Paredaens several parallel systems

K.M. vanHee

86105 Jan L.G. Dietz A framework for the conceptual modeling of

Kees M. van Hee discrete dynamic systems

86106 Tom Vemoeff Nondetenninism and divergence created by

concealment in CSP

86m R. Gerth On proving communication closedness

L. Shira of distributed layers

- 2 -

86/08 R. Koymans Compositional semantics for real-time

R.K. Shyamasundar distributed computing (Inf. & Control 1987)

W.P. de Roever

R. Gerth

S. Arum Kumar

86/09 C. Huizing Full abstraction of a real-time denotational

R. Gerth semantics for an OCCAM-like language

W.P. de Roever

86/10 J. Hooman A compositional proof theory for real-time

disoibuted message passing

86/11 W.P. de Roever Questions to Robin Milner - A responders

commentary (IFlP86)

86/12 A. Boucher A timed failures model for extended

R. Gerth communicating processes

86/13 R. Gerth Proving monitors revisited: a first step towards

W.P. de Roever verifying object oriented systems

(Fund. Informatica IX -4)

86/14 R. Koymans Specifying passing systems requires

extending temporal logic

87/01 R. Gerth On the existence of a sound and complete

axiomatizations of the monitor concept

87/02 Simon J. Klaver Federatieve Databases

Chris P.M. Verberne

87103 G.J. Houben A formal approach to distributed

J. Paredaens information systems

87/04 T. Verboeff Delay-insensitive codes -

An overview

87105 R. Kuiper Enforcing non-determinism via linear time

temporal logic specification

- 3 -

87/00 R. Koymans Temporele logica specificatie van message passing

en real-time systemen (in Dutch)

87m R.Koymans Specifying message passing and real-time

systems with real-time temporal logic

87/08 H.M.I.L. Schois The maximum number of states after projection

87/Cf) I. Kalisvaart Language extensions to study structures

L.R.A. Kessener for raster graphics

W.I.M. Lemmens

M.L.P van Lierop

F.I. Peters

H.M.M. van de Wetering

87/10 T. VertJoeff Three families of maximally nondeterministic

automata

87/ll P.Lemmens Eldorado ins and outs.

Specifications of a data base management

toolkit according to the functional model

87/12 K.M. van Hee OR and AI approaches to decision support

A. Lapinski systems

87/13 I. van der Woude Playing with patterns, searching for strings

87/14 I. Hooman A compositional proof system for an occam-

like real-time language

87/15 G. Huizing A compositional semantics for statecharts

R. Gerth

W.P. de Roever

87/16 HM.M. ten Eikelder Normal forms for a class of formulas

I.C.F. Wilmont

87/17 K.M. van Hee Modelling of discrete dynamic systems

G.I. Houben frameworl<: and examples

I.L.G. Dietz

- 4-

87/18 C.W.A.M. van Overveld An integer algorithm for rendering

curved surfaces

87/19 A.J. Seebregts Optimalisering van file allocatie in

gedistribueerde database systemen

87{l.O G.J. Houben The R 2-Algebra: An extension of

J. Paredaens an algebra for nested relations

87m R. Genh Fully abstract denotatiOnal semantics

M. Codish for concurrent PROLOG

Y. Lichtenstein

E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the

Milbius Sequence

88/02 K.M van Hee Executable Specification for Information

G.J. Houben Systems

L.J. Somers

M. Voomoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

	1. Introduction
	2. Concurrent Prolog and its Operational Semantics
	3. Denotational Semantics
	3.1 The Domain
	3.2 The Equations
	4. Full Abstraction
	5. Conclusions and Further Work
	6. References

