30 research outputs found

    An empirical method to predict sediment grain size from inorganic geochemical measurements

    No full text
    Grain size is one of the most fundamental properties of sediments. It is frequently used in paleoclimate, paleoceanographic, and paleoenvironmental research as a proxy for river discharge, current and wind strength, and to identify mass flow deposits. Measuring grain size is, however, time-consuming and destructive. Given the strong influence of grain size on sediment inorganic geochemistry, single-element variations measured by, for example, X-ray fluorescence core scanning are increasingly used to estimate grain-size variations at high resolution in sediment cores. This approach is however limited to a narrow grain-size range since individual elements only monotonically relate to grain size over a narrow size range. Here, we present a simple, code-free, multielement method based on partial least squares regression to predict sediment mean grain size from inorganic geochemical data over the range of sizes commonly encountered in sedimentary basins (clay to sand). The method was first tested using river sediment samples separated in 11 grain-size fractions, and it was later successfully applied to two sediment cores from the Chilean fjords. Our method only requires measuring grain size on a limited number (around 10) of selected training samples, and it allows to predict mean grain size at X-ray fluorescence core scanner resolution. This method has the potential to be applied to any lake or marine sediment core, provided sediment provenance, weathering, and diagenesis remain relatively stable through time, and we anticipate that it will result in a significant increase in the resolution of sediment proxy records of climate and environmental change. Plain Language Summary: Sediment grain size is one of the best indicators of past transport conditions. Here we present a method to predict mean sediment grain size from inorganic geochemical measurements. This method can be applied to geochemical measurements obtained by X-ray Fluorescence core scanning to generate grain-size profiles quickly and at high resolution, and we anticipate that it will result in much improved paleoclimate and paleoenvironmental reconstructions

    An evaluation of interferences in heat production from low enthalpy geothermal doublets systems

    Get PDF
    Required distance between doublet systems in low enthalpy geothermal heat exploitation is often not fully elucidated. The required distance aims to prevent negative interference influencing the utilisation efficiency of doublet systems. Currently production licence areas are often issued based on the expected extent of the reinjected cold water plume on the moment of thermal breakthrough. The production temperature, however, may not immediately drop to non-economic values after this moment. Consequently, heat production could continue increasing the extent of the cold water plume. Furthermore, the area influenced by pressure because of injection and production spreads beyond the cold water plume extent, influencing not only the productivity of adjacent doublet systems but also the shape of cold water plumes. This affects doublet life time, especially if adjacent doublets have different production rates. In this modelling based study a multi parameter analysis is carried out to derive dimensionless relations between basic doublet design parameters and required doublet distance. These parameters include the spacing between injector and producer of the same doublet, different production rates, aquifer thickness and minimal required production temperature. The results of this study can be used to minimize negative interference or optimise positive interference aiming at improving geothermal doublet deployment efficiency

    Towards process-based geological reservoir modelling: obtaining basin-scale constraints from seismic and well data

    Get PDF
    © 2014 Elsevier Ltd. Forward stratigraphic modelling aims at representing the spatial distribution of lithology as a function of physical processes and environmental conditions at the time of deposition so as to integrate geological knowledge into the reservoir modelling workflow, thus increasing predictive capabilities of reservoir models and efficient exploitation of hydrocarbons. Application of process-based models in inverse mode is not yet well-established due to our limited insight into the information content of common subsurface data and the computational overhead involved. In this paper we examine inverse modelling of stratigraphy by using a typical dataset acquired in the hydrocarbon industry, which consists of seismic data and standard logs from a limited number of wells. The approach is based on the use of a forward model called SimClast, developed at Delft University of Technology, to generate facies distribution and architecture at the regional scale. Three different goodness of fit functions were proposed for model inversion, following an inference approach. A synthetic reservoir unit was used to investigate the impact of the uncertainty affecting the input parameters and the information content of seismic and well data. The case study showed that the model was more sensitive to the initial topography and to the location of the sediment entry point than to sea level. The depth of the seismic reflector corresponding to the top-reservoir surface was the most informative data source; the initial and boundary conditions of the simulation were constrained by evaluating the depth of this reflector across the whole basin area. In the reservoir area, where the seismic-to-well tie was established, the depth of the reservoir top does not give enough information for constraining the model parameters. Our results thus indicate that evaluation of basin-scale data permits reduction of uncertainty in (geostatistical) reservoir models relative to the current workflow, in which only local data are used. Effective use of well data to generate reservoir models conditioned to basin-scale scenarios requires post-processing methods to downscale the output of the forward model used in the experiments.publisher: Elsevier articletitle: Towards process-based geological reservoir modelling: Obtaining basin-scale constraints from seismic and well data journaltitle: Marine and Petroleum Geology articlelink: http://dx.doi.org/10.1016/j.marpetgeo.2014.11.002 content_type: article copyright: Copyright © 2014 Elsevier Ltd. All rights reserved.status: publishe

    TOWARDS PROCESS-BASED GEOLOGICAL RESERVOIR MODELLING: OBTAINING BASIN-SCALE CONSTRAINTS FROM SEISMIC AND WELL DATA

    No full text
    Forward stratigraphic modelling aims at representing the spatial distribution of lithology as a function of physical processes and environmental conditions at the time of deposition so as to integrate geological knowledge into the reservoir modelling workflow, thus increasing predictive capabilities of reservoir models and efficient exploitation of hydrocarbons. Application of process-based models in inverse mode is not yet well-established due to our limited insight into the information content of common subsurface data and the computational overhead involved. In this paper we examine inverse modelling of stratigraphy by using a typical dataset acquired in the hydrocarbon industry, which consists of seismic data and standard logs from a limited number of wells. The approach is based on the use of a forward model called SimClast, developed at Delft University of Technology, to generate facies distribution and architecture at the regional scale. Three different goodness of fit functions were proposed for model inversion, following an inference approach. A synthetic reservoir unit was used to investigate the impact of the uncertainty affecting the input parameters and the information content of seismic and well data. The case study showed that the model was more sensitive to the initial topography and to the location of the sediment entry point than to sea level. The depth of the seismic reflector corresponding to the top-reservoir surface was the most informative data source; the initial and boundary conditions of the simulation were constrained by evaluating the depth of this reflector across the whole basin area. In the reservoir area, where the seismic-to-well tie was established, the depth of the reservoir top does not give enough information for constraining the model parameters. Our results thus indicate that evaluation of basin-scale data permits reduction of uncertainty in (geostatistical) reservoir models relative to the current workflow, in which only local data are used. Effective use of well data to generate reservoir models conditioned to basin-scale scenarios requires post-processing methods to downscale the output of the forward model used in the experiments

    Reducing the uncertainty of static reservoir models: implementation of basin-scale geological constraints

    No full text
    We propose a new workflow for building static reservoir models of siliciclastic fluvio-deltaic systems. The proposed strategy requires a process-based stratigraphic simulation model which incorporates a reservoir-scale alluvial architecture module nested within a low-resolution basin-scale (sequence-stratigraphic) model. The basin-scale model is run with the intent to approximate large-scale basin-fill properties (based on geological/geophysical background information about palaeotopography, sea level, sediment supply, subsidence, and so forth). Subsequently, the model may be stochastically optimised by dedicated post-processing software to mimic sub-grid (reservoir-scale) properties of selected parts of the basin fill. This approach allows us to narrow down the range of possible scenarios (realisations) from the outset, which results in more reliable uncertainty estimates associated with reservoir models. Pilot studies suggest that the improvement of geological credibility of stochastically simulated fluvial reservoir models may go hand-in-hand with a significant reduction of the computational effort of inverting basin-scale (process-based) stratigraphic forward models. The implementation of geological constraints on object-based models is expected to improve estimation of sand-body connectivity and dynamic reservoir behaviour, and will therefore contribute to reduction of the non-uniqueness in current static reservoir models. Furthermore, the uncertainty associated with each basin-scale parameter can be propagated all the way through to reserve estimation. The partitioning of the overall uncertainty into contributions at the basin and reservoir scales may be quantitatively assessed, and the information content of all available data may be quantified. Copyright 2013, Society of Petroleum Engineers

    The life cycle of crevasse splays as a key mechanism in the aggradation of alluvial ridges and river avulsion

    No full text
    Copyright © 2018 John Wiley & Sons, Ltd. Accommodation space in the unconfined distal part of low-gradient fluvial fans facilitates abundant floodplain deposition. Here, the development of crevasse splays plays a key role in the aggradation of alluvial ridges and subsequent river avulsion. This study presents an analysis of different stages in the evolution of crevasse splays based on observations made in the modern-day Río Colorado dryland fluvial fan fringing the endorheic Altiplano Basin in Bolivia. A generic life cycle is proposed in which crevasse-splay channels adjust towards a graded equilibrium profile with their lower-lying distal termini acting as a local base level. Initial development is dominantly controlled by the outflow of floodwater, promoting erosion near the crevasse apex and deposition towards the splay fringes. When proximal incision advances to below the maximum level of floodplain inundation, return flow occurs during the waning stage of flooding. This floodwater reflux leads to a temporary repositioning of the local base level to the deeper trunk-channel thalweg at the apex of the crevasse-splay channels. The resultant decrease in the floodplainward gradient of these channels ultimately leads to backfilling and abandonment of the crevasse splay, leaving a subtle local elevation of the floodplain. Consecutive splays form an alluvial ridge through lateral amalgamation and subsequent vertical stacking, which is mirrored by the aggradation of their parent channel floor. As this alluvial ridge becomes increasingly perched above the surrounding floodplain, splay equilibration may cause incision of the levee crevasse down to or below its trunk channel thalweg, leading to an avulsion. The mechanisms proposed in this study are relevant to fluvial settings promoting progradational avulsions. The relatively rapid accumulation rate and high preservation potential of crevasse splays in this setting makes them an important constituent of the resultant fluvial stratigraphy, amongst which are hydrocarbon-bearing successions. Copyright © 2018 John Wiley & Sons, Ltd.status: publishe

    Quantitative analysis of crystal-interface frequencies in granitoids: Implications for modelling of parent-rock texture and its influence on the properties of plutoniclastic sands

    No full text
    © 2018 Generation of sediments from crystalline rocks is the result of a complex and incompletely understood suite of processes. The time evolution of the rock-fragment assemblage in sands derived from granitoids is determined by the relative strengths of crystal interfaces and their abundances in the parent rock. In this study we highlight the role of crystal-interface frequencies in granitoids. Strong evidence for non-random texture with significant implications for predicted interface frequencies have been reported in previous studies. We analysed available interface-frequency data from granitoids using methods of compositional data analysis, and connected our results to existing texture classifications. On average, granitoids display a high degree of ordering with significant depletion of isomineralic interfaces relative to expectations based on random texture. Analysis of 210 normalized interface frequency distributions from nine different granitoids reveals a consistent pattern of variation among interface frequencies, which suggests a single underlying petrogenetic process related to the combined effects of nucleation and textural equilibration (“coarsening”). In view of the large scatter of relative interface frequencies within and among granitoids, we propose to model their distribution empirically for the purpose of calibrating sediment-generation studies. Multivariate normal distributions of centred log-ratio transformed relative frequencies are capable of capturing ~95% of the observed variability with a limited number of dimensions. As a rule of thumb, the number of dimensions needed to approximate interface-frequency counts can be taken equal to the number of mineral classes, which is (much) smaller than the number of interface classes. Mathematical analysis shows that the joint variability of rock texture and composition may be factorized into three statistically independent measures: modal composition, crystal-size probability density functions, and normalized interface frequencies. The potential independence of these measures permits objective identification of petrogenetically significant correlations among them, which will be indicated by statistically significant cross-covariances. At this stage, inferences from microscopic texture analysis cannot be extrapolated to the scale of entire drainage basins in which sediments are generated, because insufficient data are available on the large-scale spatial heterogeneity of texture and composition of granitoid parent rocks.status: publishe
    corecore