173 research outputs found

    Advances in MRI Assessment of Gliomas and Response to Anti-VEGF Therapy

    Get PDF
    Bevacizumab is thought to normalize tumor vasculature and restore the blood–brain barrier, decreasing enhancement and peritumoral edema. Conventional measurements of tumor response rely upon dimensions of enhancing tumor. After bevacizumab treatment, glioblastomas are more prone to progress as nonenhancing tumor. The RANO (Response Assessment in Neuro-Oncology) criteria for glioma response use fluid-attenuated inversion recovery (FLAIR)/T2 hyperintensity as a surrogate for nonenhancing tumor; however, nonenhancing tumor can be difficult to differentiate from other causes of FLAIR/T2 hyperintensity (eg, radiation-induced gliosis). Due to these difficulties, recent efforts have been directed toward identifying new biomarkers that either predict treatment response or accurately measure response of both enhancing and nonenhancing tumor shortly after treatment initiation. This will allow for earlier treatment decisions, saving patients from the adverse effects of ineffective therapies while allowing them to try alternative therapies sooner. An active area of research is the use of physiologic imaging, which can potentially detect treatment effects before changes in tumor size are evident

    Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases

    Get PDF
    BACKGROUND: Anti-angiogenic therapy with bevacizumab (an anti-vascular endothelial growth factor (VEGF) antibody) predominantly targets immature blood vessels. Bevacizumab has shown a survival benefit in non-small cell lung carcinoma (NSCLC) and has recently been demonstrated to be safe in patients with brain metastases. However, it is not known whether bevacizumab is effective against brain metastases or whether metastases are representative of their primary in terms of VEGF expression, hypoxia, proliferation and vascular phenotype. The aim of this study was to evaluate these factors in a series of matched primary NSCLCs and brain metastases. METHODS AND RESULTS: Immunohistochemistry showed strong correlation of carbonic anhydrase 9 expression (a marker of hypoxia) in primary and secondary cancers (P=0.0002). However, the proliferation index, VEGF expression, microvessel density and the proportion of mature vessels were discordant between primary and secondary cancers. The mean proportion of mature vessels was 63.2% higher in the brain metastases than the primary tumours (P=0.004). Moreover, the vascular pattern of the primary tumour was not representative of the metastasis. CONCLUSIONS: Brain metastases have a significantly higher proportion of mature vasculature, suggesting that they may be refractory to anti-VEGF therapy. These findings may have implications for clinical trials and biomarker studies evaluating anti-angiogenic agents in brain metastases

    Computational modeling with spiking neural networks

    Get PDF
    This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific application, the functioning of the evolving spiking neural network (eSNN) classification method is presented in detail and the principles of numerous eSNN based applications are highlighted and discussed

    Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    Get PDF
    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy

    Small Vessel Ischemic Disease of the Brain and Brain Metastases in Lung Cancer Patients

    Get PDF
    Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID) of the brain is protective against the development of brain metastases in lung cancer patients.A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8%) had evidence of brain metastases at presentation and 345 (66.0%) had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001). In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001). The grade of SVID was higher in those without brain metastases.These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients

    The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    TARGET POPULATION: This recommendation applies to adults with newly diagnosed brain metastases; however, the recommendation below does not apply to the exquisitely chemosensitive tumors, such as germinomas metastatic to the brain. RECOMMENDATION: Should patients with brain metastases receive chemotherapy in addition to whole brain radiotherapy (WBRT)? Level 1 Routine use of chemotherapy following WBRT for brain metastases has not been shown to increase survival and is not recommended. Four class I studies examined the role of carboplatin, chloroethylnitrosoureas, tegafur and temozolomide, and all resulted in no survival benefit. Two caveats are provided in order to allow the treating physician to individualize decision-making: First, the majority of the data are limited to non small cell lung (NSCLC) and breast cancer; therefore, in other tumor histologies, the possibility of clinical benefit cannot be absolutely ruled out. Second, the addition of chemotherapy to WBRT improved response rates in some, but not all trials; response rate was not the primary endpoint in most of these trials and end-point assessment was non-centralized, non-blinded, and post-hoc. Enrollment in chemotherapy-related clinical trials is encouraged

    Prediction of Glioblastoma Multiform Response to Bevacizumab Treatment Using Multi-Parametric MRI

    Get PDF
    Glioblastoma multiform (GBM) is a highly malignant brain tumor. Bevacizumab is a recent therapy for stopping tumor growth and even shrinking tumor through inhibition of vascular development (angiogenesis). This paper presents a non-invasive approach based on image analysis of multi-parametric magnetic resonance images (MRI) to predict response of GBM to this treatment. The resulting prediction system has potential to be used by physicians to optimize treatment plans of the GBM patients. The proposed method applies signal decomposition and histogram analysis methods to extract statistical features from Gd-enhanced regions of tumor that quantify its microstructural characteristics. MRI studies of 12 patients at multiple time points before and up to four months after treatment are used in this work. Changes in the Gd-enhancement as well as necrosis and edema after treatment are used to evaluate the response. Leave-one-out cross validation method is applied to evaluate prediction quality of the models. Predictive models developed in this work have large regression coefficients (maximum R2 = 0.95) indicating their capability to predict response to therapy
    corecore