7 research outputs found
Quantitative APT analysis of Ti(C,N)
A specially produced Ti(C,N) standard material, with a known nominal composition, was investigated with laser assisted atom probe tomography. The occurrence of molecular ions and single/multiple events was found to be influenced by the laser pulse energy, and especially C related events were affected. Primarily two issues were considered when the composition of Ti(C,N) was determined. The first one is connected to detector efficiency, due to the detector dead-time. The second one is connected to peak overlap in the mass spectrum. A method is proposed for quantification of the C content in order to establish the C/N ratio. A correction was made to the major C peaks, C at 6 and 12 Da, with the 13C isotopes, at 6.5 and 13 Da, according to the known natural abundance. In addition, a correction of the peak at 24 Da, where C and Ti overlap, is proposed based on the occurrence of single/multiple events for respective element. The results were compared to the results from other techniques such as electron energy loss spectroscopy, chemical analysis and X-ray diffraction. After applying the corrections, atom probe tomography results were satisfactory. Furthermore, the content of dissolved O in Ti(C,N) was successfully quantified. \ua9 2011 Elsevier B.V
Unconventional magnetization textures and domain-wall pinning in Sm–Co magnets
Some of the best-performing high-temperature magnets are Sm–Co-based alloys with a microstructure that comprises an Sm2Co17 matrix and magnetically hard SmCo5 cell walls. This generates a dense domain-wall-pinning network that endows the material with remarkable magnetic hardness. A precise understanding of the coupling between magnetism and microstructure is essential for enhancing the performance of Sm–Co magnets, but experiments and theory have not yet converged to a unified model. Here, transmission electron microscopy, atom probe tomography, and nanometer-resolution off-axis electron holography have been combined with micromagnetic simulations to reveal that the magnetization state in Sm–Co magnets results from curling instabilities and domain-wall pinning effects at the intersections of phases with different magnetic hardness. Additionally, this study has found that topologically non-trivial magnetic domains separated by a complex network of domain walls play a key role in the magnetic state by acting as nucleation sites for magnetization reversal. These findings reveal previously hidden aspects of magnetism in Sm–Co magnets and, by identifying weak points in the microstructure, provide guidelines for improving these high-performance magnetic materials
Analysis of bulk dielectrics with atom probe tomography
[No abstract available
Towards Establishing Best Practice in the Analysis of Hydrogen and Deuterium by Atom Probe Tomography
As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.<br/