494 research outputs found

    A Contribution to the Surgery of the Rectum:

    Get PDF
    n/

    Prediction of Post-Weaning Fibrinogen Status during Cardiopulmonary Bypass: An Observational Study in 110 Patients.

    Get PDF
    BACKGROUND: After cardiac surgery with cardiopulmonary bypass (CPB), acquired coagulopathy often leads to post-CPB bleeding. Though multifactorial in origin, this coagulopathy is often aggravated by deficient fibrinogen levels. OBJECTIVE: To assess whether laboratory and thrombelastometric testing on CPB can predict plasma fibrinogen immediately after CPB weaning. PATIENTS / METHODS: This prospective study in 110 patients undergoing major cardiovascular surgery at risk of post-CPB bleeding compares fibrinogen level (Clauss method) and function (fibrin-specific thrombelastometry) in order to study the predictability of their course early after termination of CPB. Linear regression analysis and receiver operating characteristics were used to determine correlations and predictive accuracy. RESULTS: Quantitative estimation of post-CPB Clauss fibrinogen from on-CPB fibrinogen was feasible with small bias (+0.19 g/l), but with poor precision and a percentage of error >30%. A clinically useful alternative approach was developed by using on-CPB A10 to predict a Clauss fibrinogen range of interest instead of a discrete level. An on-CPB A10 ≤10 mm identified patients with a post-CPB Clauss fibrinogen of ≤1.5 g/l with a sensitivity of 0.99 and a positive predictive value of 0.60; it also identified those without a post-CPB Clauss fibrinogen <2.0 g/l with a specificity of 0.83. CONCLUSIONS: When measured on CPB prior to weaning, a FIBTEM A10 ≤10 mm is an early alert for post-CPB fibrinogen levels below or within the substitution range (1.5-2.0 g/l) recommended in case of post-CPB coagulopathic bleeding. This helps to minimize the delay to data-based hemostatic management after weaning from CPB

    Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations

    Get PDF
    Electrophysiological power spectra typically consist of two components: An aperiodic part usually following an 1/f power law [Formula: see text] and periodic components appearing as spectral peaks. While the investigation of the periodic parts, commonly referred to as neural oscillations, has received considerable attention, the study of the aperiodic part has only recently gained more interest. The periodic part is usually quantified by center frequencies, powers, and bandwidths, while the aperiodic part is parameterized by the y-intercept and the 1/f exponent [Formula: see text]. For investigation of either part, however, it is essential to separate the two components. In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations & One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly used to separate the periodic from the aperiodic component. We evaluate these methods using diverse spectra obtained with electroencephalography (EEG), magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three independent research datasets. Each method and each dataset poses distinct challenges for the extraction of both spectral parts. The specific spectral features hindering the periodic and aperiodic separation are highlighted by simulations of power spectra emphasizing these features. Through comparison with the simulation parameters defined a priori, the parameterization error of each method is quantified. Based on the real and simulated power spectra, we evaluate the advantages of both methods, discuss common challenges, note which spectral features impede the separation, assess the computational costs, and propose recommendations on how to use them

    Computed tomographic imaging of subcutaneous gouty tophi.

    Get PDF

    The Aussie, 1918-1931: cartoons, digger remembrance and First World War identity

    Get PDF
    Feelings of community, cultural definition and memory were kept alive through the soldiers’ mass circulation tabloid, the Aussie, examined here in the light of theorization of memory and representation, applied to both text and cartoons. The publication’s aim for veterans’ values to become shared national values is analysed in the light of its high profile usage of soft cartoon humour and also of nostalgia – highlighting the limitations as well as the effectiveness in terms of Australia’s evolving national identity. When the post-war economic situation worsened, deeper issues of national tension were glossed over by the use of scapegoats such as ‘profiteers’ and ‘lazy workers’. The armed forces were obliged to take on a political role of lobbying for their cause, but the Aussie as ‘cheerful friend’ experienced its own identity crisis that proved to be terminal

    On-line mass spectrometry: membrane inlet sampling

    Get PDF
    Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O2 evolution versus O2 uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H2 generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and the experiments that have been conducted with MIMS

    An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans

    Get PDF
    Human, animal, and in vitro research indicates a beneficial effect of appropriate amounts of omega-3 (n-3) polyunsaturated fatty acids (PUFA) on bone health. This is the first controlled feeding study in humans to evaluate the effect of dietary plant-derived n-3 PUFA on bone turnover, assessed by serum concentrations of N-telopeptides (NTx) and bone-specific alkaline phosphatase (BSAP). Subjects (n = 23) consumed each diet for 6 weeks in a randomized, 3-period crossover design: 1) Average American Diet (AAD; [34% total fat, 13% saturated fatty acids (SFA), 13% monounsaturated fatty acids (MUFA), 9% PUFA (7.7% LA, 0.8% ALA)]), 2) Linoleic Acid Diet (LA; [37% total fat, 9% SFA, 12% MUFA, 16% PUFA (12.6% LA, 3.6% ALA)]), and 3) α-Linolenic Acid Diet (ALA; [38% total fat, 8% SFA, 12% MUFA, 17% PUFA (10.5% LA, 6.5% ALA)]). Walnuts and flaxseed oil were the predominant sources of ALA. NTx levels were significantly lower following the ALA diet (13.20 ± 1.21 nM BCE), relative to the AAD (15.59 ± 1.21 nM BCE) (p < 0.05). Mean NTx level following the LA diet was 13.80 ± 1.21 nM BCE. There was no change in levels of BSAP across the three diets. Concentrations of NTx were positively correlated with the pro-inflammatory cytokine TNFα for all three diets. The results indicate that plant sources of dietary n-3 PUFA may have a protective effect on bone metabolism via a decrease in bone resorption in the presence of consistent levels of bone formation
    corecore