558 research outputs found

    Variable sequence of events during the past seven terminations in two deep-sea cores from the Southern Ocean

    Get PDF
    The relationships among internally consistent records of summer sea-surface temperature (SSST), winter sea ice (WSI), and diatomaceous stable isotopes were studied across seven terminations over the last 660 ka in sedimentary cores from ODP sites 1093 and 1094. The sequence of events at both sites indicates that SSST and WSI changes led the carbon and nitrogen isotopic changes in three Terminations (TI, TII and TVI) and followed them in the other four Terminations (TIII, TIV, TV and TVII). In both TIII and TIV, the leads and lags between the proxies were related to weak glacial mode, while in TV and TVII they were due to the influence of the mid-Pleistocene transition. We show that the sequence of events is not unique and does not follow the same pattern across terminations, implying that the processes that initiated climate change in the Southern Ocean has varied through time

    Sea ice working group (SIP)

    Get PDF
    The sea ice is a crucial component of the polar climate system, and has an impact on albedo, heat and gas ex- change, primary productivity and car- bon export, atmospheric and ocean circulation, freshwater budget, ocean stratification, and deep water mass for- mation. It is therefore critical that it is correctly specified as a forcing or pre- dicted as a feedback in modeling stud- ies

    Late Quaternary Distribution of the Cycladophora davisiana Radiolarian Species: Reflection of Possible Ventilation of the North Pacific Intermediate Water during the Last Glacial Maximum

    Get PDF
    A comparison of micropaleontological data on the distribution of the Cycladophora davisiana radiolarian species in the surface sediment layer and the Late Quaternary sediments from the Subarctic Pacific and Far East marginal seas allowed conclusions concerning the possible conditions and occurrence of intermediate waters during the last glacial maximum. We used the modern data on the C. davisiana species, which is a micropaleontological indicator of the cold oxygen-rich upper intermediate water mass, which is now forming only in the Sea of Okhotsk. The high amount of C. davisiana in sediments of the last glacial maximum may point to the possible formation and expansion of the ventilated intermediate water in the most part of the Subarctic paleo-Pacific: the Bering Sea, the Sea of Okhotsk, within the NW Gyre, and in the Gulf of Alaska

    Potential Site Productivity Influences the Rate of Forest Structural Development

    Get PDF
    Development and maintenance of structurally complex forests in landscapes formerly managed for timber production is an increasingly common management objective. It has been postulated that the rate of forest structural development increases with site productivity. We tested this hypothesis for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests using a network of permanent study plots established following complete timber harvest of the original old-growth forests. Forest structural development was assessed by comparing empirical measures of live tree structure to published values for Douglas-fir forests spanning a range of ages and structural conditions. The rate of forest structural development—resilience—exhibited a positive relationship with site index, a measure of potential site productivity. Density of shade-intolerant conifers declined in all study stands from an initial range of 336–4068 trees/ha to a range of 168–642 trees/ha at the most recent measurement. Angiosperm tree species declined from an initial range of 40–371 trees/ha to zero in seven of the nine plots in which they were present. Trends in shade-tolerant tree density were complex: density ranged from 0 to 575 trees/ha at the first measurement and was still highly variable (25–389 trees/ha) at the most recent measurement. Multivariate analysis identified the abundance of hardwood tree species as the strongest compositional trend apparent over the study period. However, structural variables showed a strong positive association with increasing shade-tolerant basal area and little or no association with abundance of hardwood species. Thus, while tree species succession and forest structural development occur contemporaneously, they are not equivalent processes, and their respective rates are not necessarily linearly related. The results of this study support the idea that silvicultural treatments to accelerate forest structural development should be concentrated on lower productivity sites when the management objective is reserve-wide coverage of structurally complex forests. Alternatively, high-productivity sites should be prioritized for restoration treatments when the management objective is to develop structurally complex forests on a portion of the landscape

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Get PDF
    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and paleobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of the Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited between 12,000 and 13,000 cal. years B.P. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage, which point to specific scenarios involving e.g. changes in the food web that can be related to warmer surface water temperatures. Such warming of shelf waters may be related with an overshooting Atlantic Meridional Overturning Circulation (AMOC) and strong injection of warmer North Atlantic Deep Water into the Southern Ocean water masses at Termination I. Such finding may highlight the effects of AMOC changes on Antarctic ice shelf extent and coastal ecosystems. Keywords: WAIS, Amundsen Sea Embayment, diatoms, deglacial warmin
    • …
    corecore