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POTENTIAL SITE PRODUCTIVITY INFLUENCES THE RATE

OF FOREST STRUCTURAL DEVELOPMENT

ANDREW J. LARSON,1,3 JAMES A. LUTZ,1 ROLF F. GERSONDE,2 JERRY F. FRANKLIN,1 AND FOREST F. HIETPAS
1

1College of Forest Resources, University of Washington, Box 352100, Seattle, Washington 98195-2100 USA
2Watershed Services Division, Seattle Public Utilities, 19901 Cedar Falls Road SE, North Bend, Washington 98045 USA

Abstract. Development and maintenance of structurally complex forests in landscapes
formerly managed for timber production is an increasingly common management objective. It
has been postulated that the rate of forest structural development increases with site
productivity. We tested this hypothesis for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)
forests using a network of permanent study plots established following complete timber
harvest of the original old-growth forests. Forest structural development was assessed by
comparing empirical measures of live tree structure to published values for Douglas-fir forests
spanning a range of ages and structural conditions. The rate of forest structural
development—resilience—exhibited a positive relationship with site index, a measure of
potential site productivity. Density of shade-intolerant conifers declined in all study stands
from an initial range of 336–4068 trees/ha to a range of 168–642 trees/ha at the most recent
measurement. Angiosperm tree species declined from an initial range of 40–371 trees/ha to
zero in seven of the nine plots in which they were present. Trends in shade-tolerant tree density
were complex: density ranged from 0 to 575 trees/ha at the first measurement and was still
highly variable (25–389 trees/ha) at the most recent measurement. Multivariate analysis
identified the abundance of hardwood tree species as the strongest compositional trend
apparent over the study period. However, structural variables showed a strong positive
association with increasing shade-tolerant basal area and little or no association with
abundance of hardwood species. Thus, while tree species succession and forest structural
development occur contemporaneously, they are not equivalent processes, and their respective
rates are not necessarily linearly related. The results of this study support the idea that
silvicultural treatments to accelerate forest structural development should be concentrated on
lower productivity sites when the management objective is reserve-wide coverage of
structurally complex forests. Alternatively, high-productivity sites should be prioritized for
restoration treatments when the management objective is to develop structurally complex
forests on a portion of the landscape.

Key words: Douglas-fir; forest restoration; forest structural development; late-successional; productiv-
ity; Pseudotsuga menziesii; resilience; succession.

INTRODUCTION

Promoting the development of structurally complex

forests is a primary strategy for conserving biodiversity

in temperate forests (Lindenmayer and Franklin 2002,

Lindenmayer et al. 2006) and an increasingly common

management objective on public and some private lands

(e.g., USDA and USDI 1994, City of Seattle 2000,

Jenkins et al. 2004). Silvicultural treatments are one

method used to promote the development of structural

complexity in young, previously harvested forests (Carey

2003). Managers are faced with the challenge of

prioritizing candidate forest stands for silvicultural

treatment, in addition to designing site-specific treat-

ments. Forest structure develops through a generally

predictable sequence, gradually attaining complex con-

ditions many decades after high severity disturbance

(Carey and Curtis 1996, Oliver and Larson 1996,

Franklin and Van Pelt 2004, Spies 2004). Resilience

describes the rate at which a community returns to pre-

disturbance conditions (Halpern 1988); resilience is used

here specifically with reference to the rate of forest

structural development. Identifying factors that influ-

ence resilience of forests will help managers prioritize

previously harvested forests for silvicultural treatments

designed to accelerate the rate of forest structural

development.

Understanding how development of community

properties varies in response to changing abiotic or

biotic context, such as a gradient of potential site

productivity, is a promising line of investigation with the

potential to increase the generality and predictive

strength of community ecology (Agrawal et al. 2007).

It has been postulated, but not empirically tested, that

forests are more resilient—proceed through the struc-

tural development sequence faster—on high-productiv-
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ity sites (Franklin et al. 2002). This hypothesis is a

specific case of the resilience–productivity hypothesis,

which has seen few empirical tests (Steiner et al. 2006).

Recent experimental work (Pringle et al. 2007) has

caused some to suggest that low productivity ecosystems

will be less able to respond to anthropogenic perturba-

tion than their high productivity counterparts (Larson

and Paine 2007). This adaptation of the resilience–

productivity hypothesis could contribute to the theoret-

ical basis for applied and restoration ecology in forest

ecosystems, if upheld by empirical studies.

Succession and structural development describe dif-

ferent aspects of change through time in ecological

communities. Succession is the process of species

composition change in an ecological community follow-

ing disturbance (sensu Connell and Slatyer 1977).

Structural development describes the changes in the

sizes, abundance, and spatial arrangement of the various

community elements (e.g., the live trees, snags, and logs

in a forest) following a disturbance (Franklin et al.

2002). Successional change of species composition and

structural development are not necessarily related. No

succession of tree species occurs in single-species forest

systems such as edaphic climax lodgepole pine (Pinus

contorta var. murrayana (Grev. and Balf.) Engelm.)

forests (Franklin and Dyrness 1988). However, struc-

tural development proceeds in lodgepole pine forests as

trees establish, grow, decay, and die, as mediated by

interactions with and between fire, fungi, and bark

beetles (Gara et al. 1985, Stuart et al. 1989). Natural

single-species forests are relatively rare; in most forest

systems species succession and structural development

occur contemporaneously and are related.

Based on the resilience–productivity hypothesis, the

development of forest structure is predicted to occur at

faster rates on high-productivity sites, given similar

disturbance histories (Fig. 1). We used an unplanned

experiment consisting of a set of permanent forest

vegetation study plots in Douglas-fir (Pseudotsuga

menziesii (Mirb.) Franco) forests spanning a gradient

of potential site productivity to test this prediction. The

permanent study plots document forest structural

development following clearcut timber harvest of the

original late-successional forest in the late 19th and early

20th centuries. There were three main objectives for this

study: (1) conduct a test of the resilience–productivity

hypothesis in the context of forest structural develop-

ment; (2) characterize trends of and relationships

between tree species succession and structural develop-

ment; and (3) provide information that will be useful to

forest managers, particularly those charged with man-

aging for complex structure in previously harvested

forests.

METHODS

Study area and field methods

The study sites are a subset of a larger group of

permanent study plots (PSP), originally established as a

long-term forest growth and yield study (Table 1),

located within the Cedar River Municipal Watershed

(CRMW) in the central western Washington Cascade

Range, USA (478240 N, 1218540 W). The original growth

and yield study was designed to provide CRMW

managers with an estimate of timber volume production

in low elevation, second-growth Douglas-fir stands:

permanent study plots were therefore located in stands

spanning the productivity gradient present in the

management area. The initiation of this study predates

the widespread adoption of modern standards for

experimental design in ecological studies: plots were

subjectively located within study stands and plot sizes

were determined according to the professional judgment

of the responsible forester. The frequency and timing of

FIG. 1. Conceptual representation of the hypothesized relationship between forest structural development and site productivity.
The postulated relationship is a specific case of the resilience–productivity hypothesis, which posits that resilience (defined here as
the rate of forest structural development) will increase with productivity. We explicitly include anthropogenic disturbances, such as
timber harvest, in this formulation of the resilience–productivity hypothesis.
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remeasurements was determined by the availability of

CRMW staff and funding. We analyzed the n¼ 12 plots

(from a total of n ¼ 21 original plots) that had not

experienced silvicultural manipulation since initiation of

the post-harvest cohort. All plots except one regenerated

naturally; in addition to abundant natural regeneration,

PSP 3 was planted with Douglas-fir seedlings.

The study plots analyzed here are distributed along a

17.4 km reach of the east-west-oriented Cedar River

valley and are located within the Tsuga heterophylla

Zone, which is typified by dominance of the shade-

intolerant conifer Douglas-fir in early-successional

stages (Franklin and Dyrness 1988). The shade-tolerant

conifer tree species western hemlock (Tsuga heterophylla

(Raf.) Sarg.) and western red cedar (Thuja plicata Donn

ex D. Don) become increasingly dominant in later

successional stages (Franklin et al. 2002). The climate in

the Cedar River valley is characterized by rainy, cool

winters and moderate, dry summers (Barg and Edmonds

1999). Average annual precipitation is 1420 mm, falling

primarily as rain between October and May. The

temperature regime is moderate: average annual, July

and January temperatures are 9.78, 16.98, and 3.28C,

respectively.

Species and diameter at breast height (diameter in cm

at 1.37 m above ground level; dbh) of all conifer trees

present within study plots were recorded at each

measurement. Diameter at breast height of all angio-

sperm (hardwood) trees was also measured, but species

was not always recorded. The number of trees present in

each PSP across all measurement periods ranged from

26 to 1935 stems per plot.

Site productivity was characterized with King’s site

index (King 1966). Site index was calculated using total

height and age at breast height of canopy-dominant

Douglas-fir; empirical age–height curves were used to

determine the site index number, the height of dominant

Douglas-fir at breast height age of 50 years. At least

three trees were used to calculate site index for each PSP

(maximum n ¼ 7 trees for PSP 2).

Data analysis

Forest structure was characterized from permanent

plot records for each measurement period with the old-

growth index (Iog), a composite measure of live tree

variables (Acker et al. 1998). The variable Iog, which is

positively related to structural complexity in Douglas-fir

forests (Zenner 2004), subsumes the four live-tree

overstory variables identified as successfully discrimi-

nating between young, mature, and old-growth Doug-

las-fir stands (Spies and Franklin 1991): standard

deviation of dbh for all trees .5 cm dbh; density of

Douglas-fir .100 cm dbh (trees/ha); mean dbh (cm) for

all trees .5 cm dbh; and density of all trees .5 cm dbh

(trees/ha). Increasing values of the first three Iog
subscores are associated with increasing old-growth

structure; whereas decreasing values of the density of

trees .5 cm dbh are associated with increasing old-

growth structure. The Iog used here incorporates a slight

modification of the original form and is built on more

tenable assumptions about the eventual endpoint of

Douglas-fir forest structural development. Specifically,

the original formulation of Iog is based on regional mean

values for old-growth structural variables. Implicit in the

TABLE 1. Attributes of permanent study plots in the Cedar River Municipal Watershed, central western Washington, USA.

Plot
Size
(m2)

Site
index  (m)

Elevation
(m) Year measured Soil typeà Soil textureà

PSP 2 4047 27 226 1946, 1953, 1958, 1974,
1979, 1986, 2005

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 3 2023 24 486 1953, 1958, 1964, 1974,
1980, 1986, 2004

sandy-skeletal, mixed, mesic
Humid Haplorthods

sandy loam

PSP 4 809 30 225 1953, 1958, 1967, 1974,
1982, 1986, 2005

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 5 809 35 270 1953, 1967, 1974, 1979,
1986, 2005

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 7 1012 38 242 1954, 1967, 1974, 1979,
1986, 2005

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 8 1012 41 244 1954, 1982, 2005 coarse-loamy, mixed, mesic,
ortstein Typic Haplorthods

gravely silt loam

PSP 9 1012 42 509 1954, 1979, 1986, 2005 coarse-loamy, mixed, mesic,
ortstein Typic Haplorthods

gravely silt loam

PSP 10 809 36 392 1954, 1967, 1974, 1986,
2003

sandy-skeletal, mixed, frigid
Typic Haplorthods

gravelly sandy loam

PSP 11 1012 34 180 1954, 1974, 1979, 1986,
2005

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 12 1012 42 177 1954, 1967, 1974, 1979,
1986, 2003

sandy-skeletal, mixed, mesic
Typic Haplorthods

gravelly coarse sandy loam

PSP 14 809 34 268 1954, 1974, 1981, 1986,
2006

coarse-loamy, mixed, mesic,
ortstein Typic Haplorthods

sandy loam

PSP 16 809 34 294 1957, 1960, 1979, 2005 coarse-loamy, mixed, mesic,
ortstein Typic Haplorthods

sandy loam

  Base age 50 years at breast height (King 1966).
à Goldin (1992).
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original construction of Iog is the assumption that all

forest stands converge to mean late-successional condi-

tions. This assumption is not ideal: old-growth structure

is by definition heterogeneous and many old-growth

forests never achieve mean conditions. Therefore, we

used the 95% confidence intervals (CI) for the regional

values, rather than the mean values (Zenner 2004). Iog is

calculated as

Iog ¼ 25
X

i

xi ÿ xi;young

xi;old ÿ xi;young

�

�

�

�

�

�

�

�

ð1Þ

where xi is the measured value for the ith structural

variable; xi,young is the regional mean value for the ith

structural variable in young Douglas-fir forests and xi,old
is the lower bound (upper bound for density [no.

trees/ha] of all trees .5 cm dbh ) of the 95% CI for

the ith structural variable in old-growth Douglas-fir

forests. Iog is constrained to range from 0 to 100 (see

Acker et al. 1998 for additional details); a score of 0

corresponds to typical young-forest structure while a

score of 100 is interpreted as old-growth (complex)

structure. In the formulation used here (Eq. 1), an Iog of

100 defines the minimum threshold for complex forest

structure.

In order to compare resilience (i.e., the rate of forest

structural development) of the different stands we fit a

sigmoid curve (Spies and Franklin 1988) to the series of

Iog measurements for each permanent plot. We fit a

model of the form

Iog ¼
100

1þ expðÿ½t ÿ t50�=kÞ
ð2Þ

where t is stand age in years and t50 and k are parameters

to be estimated. This particular form was desirable for

several reasons. First, t50 is interpreted directly as an

estimate of resilience, the rate of recovery toward late-

successional conditions: in this case, expressed as the

time in years to reach Iog¼50. Because the lower limit of

Iog is determined by stand structure associated with

forests 40–80 years old, it is expected that the Iog vs. age

curve will be asymptotic for very young (,40 years)

forests. Relative to the total duration of forest structural

development (Franklin et al. 2002) rapid structural

change occurs in the maturation stage (Acker et al.

1998), resulting in a steep increase in the Iog vs. age

curve, followed by the gradual attainment of structurally

complex old-growth conditions. Even seemingly cata-

strophic disturbances do not necessarily remove all live

tree elements of forest structure (Franklin and MacMa-

hon 2000). Thus, a flexible model that could accommo-

date forest ecosystem response to incomplete

disturbance—a model not constrained to pass through

the origin—was necessary. Curves were fit to augmented

Iog series which included an initial values of Iog ¼ 0 at

stand age 0 years for each plot. This addition is

appropriate since the study sites were harvested com-

pletely: no residual live trees from the original late-

successional forest are apparent in the plot records.

Estimates of t50 were obtained for n ¼ 11 plots (P ,

0.01). A nonzero Iog score was attained at PSP 2 only in

the most recent measurement period, which is insuffi-

cient to derive an estimate of t50, thus PSP 2 could not be

included in the productivity–resilience analysis. Visual

examination of the data indicates that t50 at PSP 2 (site

index [SI] ¼ 27) will be approximately 100 years,

consistent with observed relationship between t50 and

SI for the remainder of the study plots (see Results).

Nonmetric multidimensional scaling (NMS) (Kruskal

1964) was used to characterize changes in species

composition over successional time. Input variables for

the NMS ordination of tree species composition were

two measures of abundance (basal area [m2/ha] and stem

density [no. trees/ha]) for angiosperm species, shade-

tolerant conifer species, and shade-intolerant species at

each plot–year combination. Stem density and basal

area together provide a more complete picture of tree

species composition because stem density alone does not

reflect the influence of tree size on stand-scale species

composition. Sorensen’s distance measure was used after

data were relativized by column totals. The ‘‘slow and

thorough’’ autopilot mode of PC-ORD version 5.0

(MjM Software Design, Gleneden Beach, Oregon, USA)

in which 250 runs with the real data were analyzed for

one- to six-dimensional solutions was used. A Monte

Carlo test with 250 runs of randomized data indicated

that the NMS ordination extracted stronger axes than

expected by chance (P , 0.01). A final two-dimensional

solution with a stress of 11.05 and instability of 1.0 3

10ÿ7 was selected after inspecting stress values at each

dimension. Pearson correlation coefficients (r) were used

to characterize the relationship between the NMS axes

(species-succession space) and a second matrix of

structural variables comprised of the four input vari-

ables for Iog, as well as the calculated Iog scores.

RESULTS

The live tree component of forest structure developed

increasing similarity to late-successional conditions on

all plots over the period of observation. The density of

live trees .5 cm dbh declined, while mean and standard

deviation of tree diameter increased (Table 2). The

coefficient of variation of tree diameter increased in all

but one stand, PSP 5, over the course of the study. Two

stands (PSP 8 and PSP 12) also included large diameter

Douglas-fir (.100 cm dbh) by the last measurement. As

of the most recent measurement Iog scores ranged from

20.2 to 88.0 (Fig. 2). The parameter t50 decreased with

increasing site productivity (Fig. 3, adjusted correlation

[r2adj]¼0.32, F1,9¼5.73, P¼0.04), marking a relationship

between resilience and productivity.

The four component variables of Iog did not increase

uniformly during forest structural development (Fig. 4).

Mean tree dbh drove initial increases in Iog values. Total

ANDREW J. LARSON ET AL.902 Ecological Applications
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tree density and standard deviation of tree dbh

corresponded with subsequent increases in Iog scores.

Large diameter trees contributed to increases in Iog only

at relatively high Iog scores.

A successional trend in tree species composition

emerged over the duration of the study. Density of

shade-intolerant conifer species (Douglas-fir, Sitka

spruce [Picea sitchensis (Bongard) Carrière], noble fir

[Abies procera Rehd.], and western white pine [Pinus

monticola Douglas ex D. Don]) declined in all plots over

the period of study from an initial range of 336–4068

trees/ha (mean 1382 trees/ha) to a range of 168–642

trees/ha (mean 373 trees/ha) at the most recent

measurement (Fig. 5). Angiosperm trees occurred in

nine of the 12 study stands. Density of angiosperm trees

(bitter cherry [Prunus emarginata (Dougl. Ex Hook.) D.

Diert.], red alder [Alnus rubra Bong.], willow [Salix sp.],

and bigleaf maple [Acer macrophyllum Pursh]) declined

from an initial range of 40–371 trees/ha (mean 123

trees/ha) to zero in seven of the nine plots in which they

were present. However, PSP 10 and PSP 11 contained

small amounts of bigleaf maple at the most recent

measurement: 12.4 trees/ha at stand age 76 and 19.9

trees/ha at 132 years, respectively. The shade-tolerant

conifer component (western hemlock, western redcedar,

and Pacific silver fir [Abies amabilis Dougl. Ex Forbes])

exhibited complex dynamics across the study stands

(Fig. 6). Shade-tolerant tree density at the initial

measurement varied from 0 to 575 trees/ha (mean 151

trees/ha). By the most recent measurement shade-

tolerant tree density ranged from 25 to 389 trees/ha

(mean 226 trees/ha). A single stand (PSP 5) has

supported very low densities of shade-tolerant trees

TABLE 2. Developmental trends of live tree structural variables
in previously harvested Douglas-fir forests located in the
Cedar River Municipal Watershed, western Washington
Cascade Range, USA.

Site and stand
age (years)

dbh of all trees
.5 cm dbh (cm)

Tree density
(no./ha)

Mean SD
All trees

.5 cm dbh
Douglas-fir

.100 cm dbh)

PSP 2

24 7.3 2.5 4779 0
31 9.2 3.7 4545 0
36 10.9 4.2 3475 0
52 16.2 5.5 1934 0
57 17.9 6.2 1687 0
64 20.0 7.1 1368 0
83 20.8 12.1 595 0

PSP 3

28 13.6 5.4 2100 0
33 15.4 6.7 1970 0
39 17.1 8.3 1775 0
49 21.9 9.0 1270 0
55 25.0 9.9 1055 0
61 27.3 11.2 950 0
79 27.7 16.3 935 0

PSP 4

21 13.9 3.4 1247 0
26 16.3 3.9 1247 0
35 19.9 5.6 1309 0
42 23.5 6.0 1186 0
50 25.4 6.3 1074 0
54 27.2 6.9 790 0
73 29.6 11.8 692 0

PSP 5

30 18.9 8.1 1186 0
44 27.3 8.5 865 0
51 29.2 9.5 729 0
56 31.7 8.9 716 0
63 33.5 9.7 655 0
82 41.4 10.2 457 0

PSP 7

41 26.1 8.7 850 0
54 30.7 11.7 642 0
61 32.9 13.6 524 0
66 36.2 13.5 484 0
73 37.9 17.1 484 0
92 38.5 22.5 445 0

PSP 8

61 40.3 13.1 514 0
89 50.1 17.8 336 0
112 31.6 29.0 524 10

PSP 9

44 34.8 13.2 337 0
69 45.5 20.6 338 0
95 57.1 23.5 257 0

PSP 10

27 17.1 6.6 1494 0
40 22.9 10.2 1210 0
47 28.1 12.1 976 0
59 29.2 15.2 790 0
76 33.2 17.5 630 0

PSP 11

81 34.9 11.3 603 0
101 30.7 18.2 850 0
106 33.2 17.8 692 0
113 32.1 20.4 632 0
132 36.6 22.8 504 0

TABLE 2. Continued.

Site and stand
age (years)

dbh of all trees
.5 cm dbh (cm)

Tree density
(no./ha)

Mean SD
All trees

.5 cm dbh
Douglas-fir

.100 cm dbh)

PSP 12

48 33.5 9.7 672 0
61 26.9 15.3 850 0
68 33.6 16.4 583 0
73 30.8 19.3 751 0
80 28.2 20.1 662 0
97 38.4 25.2 553 10

PSP 14

27 13.2 5.8 3038 0
47 20.8 8.4 1494 0
54 22.8 9.5 1266 0
59 24.1 10.9 976 0
79 25.5 15.5 852 0

PSP 16

22 14.4 5.7 2174 0
25 16.6 6.0 1840 0
44 25.0 8.3 963 0
70 29.1 15.8 778 0

June 2008 903PRODUCTIVITY INFLUENCES RESILIENCE



and experienced virtually no net change over the study

period.

The final two-dimensional NMS solution (Fig. 7)

accounted for 93% of the variance in tree species

composition based on the coefficient of determination

between the distance in ordination space and distance in

the original space for axis 1 (r2¼ 0.60) and axis two (r2¼

0.33). The gradient represented by axis 1 was primarily

driven by hardwood basal area (r ¼ ÿ0.86) and stem

density (r ¼ ÿ0.77). Axis one was less strongly but

negatively related to stem density (r ¼ÿ0.43) and basal

area (r¼ÿ0.11) of shade-tolerant conifers. Stem density

and basal area of shade-intolerant conifers showed

divergent patterns of association with axis 1: shade-

intolerant conifer stem density (r¼ÿ0.36) and basal area

(r¼ 0.33) were weakly correlated with axis 1. Axis 2 was

driven primarily by the basal area of shade-tolerant

conifers, which was positively related (r ¼ 0.83), and

stem density of shade-intolerant conifers, which showed

a negative relationship (r ¼ ÿ0.61). Angiosperm stem

density (r ¼ÿ0.37) and basal area (r ¼ÿ0.24) exhibited

weak negative relationships with axis 2, while shade-

intolerant conifer basal area (r ¼ 0.41) and shade-

tolerant conifer stem density (r ¼ 0.45) showed slightly

stronger positive relationships with axis 2.

Forest structure variables exhibited the strongest

correlations with axis 2 (Fig. 7). Late-successional forest

structure, as measured by Iog, was positively correlated

with axis 2 (r¼ 0.79). The mean and standard deviation

of tree diameter had positive correlations of similar

strength with axis 2: r ¼ 0.75 and r ¼ 0.83, respectively.

Density of all trees .5 cm dbh was negatively correlated

with both axis 2 (r ¼ ÿ0.52) and axis 1 (r ¼ ÿ0.45).

Density of trees .100 cm dbh was weakly correlated

with axis 2 (r¼ 0.24) and not related to axis 1 (r¼ 0.01).

DISCUSSION

High-productivity sites developed toward complex

structure more rapidly than low-productivity sites

following stand-initiating disturbance in this study,

supporting the resilience–productivity hypothesis

(Franklin et al. 2002). The proposition that low-

productivity ecosystems will be slower to recover from

anthropogenic perturbation relative to their high-pro-

ductivity analogues (Larson and Paine 2007) is also

supported, given that the study stands originated from

timber harvest.

Tree growth and demographic processes both operate

throughout forest structural development. However, the

nonuniform increase of the component Iog subscores

suggests an underlying structure in the contributions of

FIG. 2. Developmental trajectory of forest structure as measured by the old-growth index (Iog) for permanent sample plots (n¼
12 plots) and fitted curves (n¼ 11 plots; see Eq. 2). The old-growth index is a unitless composite index based on four measures of
live-tree forest structure: standard deviation of dbh for all trees .5 cm dbh; density of Douglas-fir .100 cm dbh (no. trees/ha);
mean dbh (cm) for all trees .5 cm dbh; and density of all trees .5 cm dbh (no. trees/ha). The old-growth index is scaled from 0 to
100, with the lower and upper bounds corresponding to published values for regional mean young and old-growth live-tree forest
structure variables. See Methods for additional detail on the calculation of the old-growth index.
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different processes throughout the structural develop-

ment sequence: tree growth dominates initially, followed

by demographic processes, with the importance of tree

growth reemerging later in stand development. The early

contribution of the mean tree dbh subscore to the total

Iog score (Fig. 4) indicates that tree growth initially

drives the development of forest structure. As mean tree

size increases, competitive tree mortality reduces the

density of the initial tree cohort, as reflected by the Iog
subscore for density of trees .5 cm dbh (Fig. 4). Non-

competitive mortality (e.g., due to wind, insects, or

pathogens) removes members of the initial cohort during

and after the self-thinning phase of stand development

(Bible 2001, Lutz and Halpern 2006), providing growing

space for shade-tolerant species to recruit (Franklin

et al. 2002) and grow (Winter et al. 2002) in the

understory, which increases the standard deviation of

tree dbh (Fig. 4). The role of competitive and non-

competitive tree mortality and shade-tolerant conifer

recruitment underscore the importance of demographic

processes—tree mortality and recruitment—during in-

termediate stages of structural development. The late

emergence of the trees .100 cm dbh subscore (Fig. 4)

illustrates that growth processes are important through-

out the developmental sequence, not just in the early

stages. Other studies have documented similar trends in

forest structural development. Acker et al. (1998) found

that the density of trees .5 cm dbh and mean tree dbh

approached old-growth values relatively quickly, while

the standard deviation of tree dbh and density of trees

.100 cm dbh attained old-growth values later in stand

development. Zenner (2004) concluded that structural

complexity in old Douglas-fir stands was primarily

driven by the standard deviation of tree dbh and density

of trees .100 cm dbh.

The strongest successional signal detected in this

study was the decline of hardwood tree abundance

(Fig. 7). Interestingly, abundance of hardwood species

showed little relationship to the development of forest

structure. This result contrasts with that of Deal et al.

(2004) who concluded that mixed conifer–alder stands

are more structurally heterogeneous than pure conifer

stands of the same age. It may be that the lack of a

relationship between hardwood tree abundance and

forest structural development in this present study is due

to the relatively low abundance of hardwood trees in the

study stands. The lack of a relationship between NMS

axis one and forest structural complexity confirms that

succession and structural development are not equiva-

lent processes.

Variables representing increasing structural complex-

ity were positively correlated with the second NMS axis,

FIG. 3. Regression of time in years to reach Iog¼ 50 (t50) on site index, a measure of site productivity. Site index corresponds to
the total height (m) of dominant Douglas-fir trees at breast height age of 50 years. Age at breast height and total height of dominant
Douglas-fir trees were compared with the empirical age–height curves (King 1966) to determine the site index number for individual
study plots. Forest resilience is measured by t50, an estimate of which is provided as a parameter of the fitted logistic growth curve
for each study plot (see Methods). Lower values of t50 correspond to greater resilience.
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the gradient of which was most strongly correlated with

basal area of shade-tolerant conifers (Fig. 7). Density of

shade-tolerant conifers, however, showed only a mod-

erate positive correlation with axis two. Structural

development of Douglas-fir forests occurs concurrent

with the increasing abundance of shade-tolerant coni-

fers, primarily western hemlock and western redcedar, as

succession advances (Franklin and Hemstrom 1981,

Huff 1995, Franklin et al. 2002, Van Pelt and Nadkarni

2004, Keeton and Franklin 2005, Zenner 2005). How-

ever, shade-tolerant conifers are not restricted to a late-

successional role. They are often present in the stand-

initiating cohort (Isaac 1943, Franklin and Hemstrom

1981, Huff 1995, Larson and Franklin 2005, Lutz and

Halpern 2006); structurally simple young forest stands

can include hundreds of shade-tolerant conifers per

hectare (Fig. 6). Structurally complex older forests are

distinguished by the presence of large (.40 cm dbh)

individual shade-tolerant conifers (Franklin and Spies

1991, Acker et al. 1998), consistent with the positive

correlation of forest structure variables with NMS axis

two.

The association of the variables contributing to Iog,

and Iog itself with NMS axis two emphasize the

necessary distinction between tree species succession

and structural development. While succession and

structural development occur contemporaneously, the

rates of development between the two are not linearly

related and the relationships vary throughout stand

development. Here, the loss of three hardwood tree

species during succession had little relationship to forest

structural development.

Development of structural complexity in Douglas-fir

forests requires mortality in the pioneering cohort and

recruitment of shade-tolerant conifer species into the

lower and middle canopy (Franklin et al. 2002, Zenner

2005). We hypothesize that the observed positive

influence of potential site productivity on the rate of

forest structural development is in part due to elevated

rates of tree population processes—mortality and

recruitment—in forests situated on high productivity

sites.

Competition-based tree mortality should be positively

related to the rate of structural development. The

pioneer cohort develops towards a lower number of

large individuals during the self-thinning stage of forest

structural development (Oliver and Larson 1996, Frank-

lin et al. 2002), creating higher values of Iog by both

reducing stand density and increasing mean tree

diameter (Fig. 4). Elevated rates of competitive mortal-

ity on more productive sites have been demonstrated

(Yoda et al. 1963, Morris and Myerscough 1991) and

FIG. 4. The individual components of Iog each have their period of maximum change during different periods of forest
development. The mean dbh subscore is responsible for generating most of the initial nonzero Iog values. The subscores for density
of trees .5 cm dbh (TPH, number of trees per hectare), standard deviation of dbh, and density (TPH) of trees .100 cm dbh
contribute to Iog at increasingly later stages of stand structural development, respectively.
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FIG. 5. Changes in density of shade-intolerant conifers (pooled for Douglas-fir, noble fir, Sitka spruce, and western white pine)
over time.

FIG. 6. Changes in density of shade-tolerant conifers (pooled for western hemlock, western redcedar, and Pacific silver fir) over
time.
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probability of mortality has been shown to be positively

related to potential site productivity (Bi 2001, Eid and

Tuhus 2001, Shen et al. 2001, Yao et al. 2001). The

increased probability of mortality is a consequence of

the higher rate of biomass accumulation on higher

productivity sites, which is in turn associated with a

more quickly decreasing stem density according to the

self-thinning relationship (Yoda et al. 1963). Elevated

rates of competitive mortality on high-productivity sites

decrease the duration of the competitive exclusion phase

of stand development, allowing later stages character-

ized by relatively greater structural complexity to be

reached in a shorter period of time.

Episodic noncompetitive tree mortality in the over-

story results in growth increases of understory shade-

tolerant trees (Winter et al. 2002), which promotes

recruitment from the seedling (,5 cm dbh) size class to

the tree (.5 cm) size class in canopy gaps (Stewart

1986). Recruitment of shade-tolerant conifers into the

tree size class increases within-stand variation in tree

diameter (Huff 1995, Zenner 2005), which corresponds

with increasing Iog scores (Fig. 4). Rates of shade-

tolerant tree recruitment should be elevated on high-

productivity sites compared to low-productivity sites

given similar rates of non-competitive overstory tree

mortality across the productivity gradient; noncompet-

itive mortality is likely to have variable relationships

with productivity depending on species, location, age,

and the specific agent of mortality (Franklin et al. 1987).

Canopy gaps large enough to influence shade-tolerant

tree recruitment develop in a shorter period of time on

high-productivity sites because trees attain large size

relatively faster on high-productivity sites. This same

mechanism is consistent with the observation of

Franklin et al. (2002) that spatial heterogeneity due to

gap creation develops more rapidly on high-productivity

sites.

MANAGEMENT IMPLICATIONS

Currently, a common management objective on many

public and some private lands is to develop and

maintain structurally complex late-successional forests

in landscapes formerly managed for timber production.

Active silvicultural treatments, sometimes termed ‘‘res-

toration,’’ are increasingly utilized in young, previously

harvested stands to hasten forest structural development

(Spies et al. 1991, Carey 2003, Keeton 2006, Davis et al.

2007, Deal 2007).

FIG. 7. Nonmetric multidimensional scaling ordination of species composition throughout the study period. Location in
ordination space (in boldface type) of hardwood density, in trees per hectare (hdwdTPH), hardwood basal area (hdwdBA), shade-
intolerant density (intolTPH), shade-intolerant basal area (intolBA), shade-tolerant density (tolTPH), and shade-tolerant basal
area (tolBA) is plotted, along with the correlations to the numeric values giving rise to the Iog subscores (mean dbh, standard
deviation of dbh (SDdbh), TPH for trees .5 cm dbh (TPH5cm); TPH for trees .100 cm dbh not shown) and the calculated
composite Iog score (TPH, no. trees/ha).
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Site productivity is an important consideration in

prioritizing young, previously harvested stands for

restoration treatments. Stands on low-productivity sites

move through the developmental sequence at a relatively

slow pace. Therefore, where reserve-wide reestablish-

ment of structurally complex forests is the primary

objective (e.g., City of Seattle 2000) but budgets are

limiting, low-productivity sites may have the highest

priority for restoration treatments. High-productivity

sites should respond rapidly to restoration treatments,

producing structurally complex forests in the shortest

time. Hence, stands on high-productivity sites may take

priority for treatment if the primary objective is

restoration of complex structure on a portion of a large

management area, for example to provide critical

habitat for species of concern.

In many temperate forest ecosystems only small areas

of structurally complex forest remain. As a result,

conservation reserves are established in previously

harvested forests (for example, Late-successional Re-

serves in the Northwest Forest Plan [USDA and USDI

1994]) so that the desired conditions and associated

biodiversity can be created and sustained, respectively,

in the future. Results from this study suggest that

preserving more productive areas within forest land-

scapes will yield complex forest structure in a shorter

time period. Thus, the productive capacity of forest

lands should be considered when designating new

reserves, in addition to reserve spatial arrangement

and extent. Within the Douglas-fir region variation in

site class (Isaac 1949) will be a useful guide for

designating new areas to be managed for development

of structurally complex forests. More generally, when

conservation reserves are designated to allow for the

future development of desired habitats, the capacity of

the site to develop the desired condition should be

included in reserve design and site selection.
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