24 research outputs found

    GNOSIS: the first instrument to use fibre Bragg gratings for OH suppression

    Full text link
    GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.Comment: 15 pages, 13 figures, accepted to A

    PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

    Full text link
    PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the lines. This gives a much higher signal-noise ratio at low resolution but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited. The optical train is made of fore-optics, an IFU, a fibre bundle, the Bragg grating unit, a second fibre bundle and a spectrograph. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1470 nm to 1700 nm (it can also be used in the 1090 nm to 1260 nm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and low absorption glasses. The detector noise will also be lower. Throughout the PRAXIS design special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. This made the spectrograph design challenging because practical constraints required that the detector and the spectrograph enclosures be physically separate by air at ambient temperature. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.Comment: SPIE conference proceedings 915

    Adaptive optics tracking and pushing system for space debris manoeuvre

    Get PDF
    As space debris in lower Earth orbits are accumulating, techniques to lower the risk of space debris collisions must be developed. Within the context of the Space Environment Research Centre (SERC), the Australian National University (ANU) is developing an adaptive optics system for tracking and pushing space debris. The strategy is to pre-condition a laser launched from a 1.8 m telescope operated by Electro Optics Systems (EOS) on Mount Stromlo, Canberra and direct it at an object to perturb its orbit. Current progress towards implementing this experiment, which will ensure automated operation between the telescope and the adaptive optics system, will be presented.The authors would like to acknowledge the support of the Cooperative Research Centre for Space Environment Management (SERC Limited) through the Australian Government’s Cooperative Research Centre Programm

    Cryogenic detector preamplifer developments at the ANU

    Get PDF
    We present a summary of the cryogenic detector preamplifier development programme under way at the ANU. Cryogenic preamplifiers have been demonstrated for both near-infrared detectors (Teledyne H1RG and Leonardo SAPHIRA eAPD as part of development for the GMTIFS instrument) and optical CCDs (e2v CCD231-84 for use with the AAT/Veloce spectrograph). This approach to detector signal conditioning allows low-noise instrument amplifiers to be placed very close to an infra-red detector or optical CCD, isolating the readout path from external interference noise sources. Laboratory results demonstrate effective isolation of the readout path from external interference noise sources. Recent progress has focussed on the first on-sky deployment of four cryogenic preamp channels for the Veloce Rosso precision radial velocity spectrograph. We also outline future evolution of the current design, allowing higher speeds and further enhanced performance for the demanding applications required for the on instrument wavefront sensor on the Giant Magellan Integral Field Spectrograph (GMTIFS).This research was supported under Australian Research Council's Linkage Project funding scheme (LP150100620) in partnership with the Australian National University and Giant Magellan Telescope Organisation

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    Keck Planet Finder: design updates

    Get PDF
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter

    Veloce Rosso: Australia's new precision radial velocity spectrograph

    Get PDF
    Veloce is an ultra-stable fibre-fed R4 echelle spectrograph for the 3.9 m Anglo-Australian Telescope. The first channel to be commissioned, Veloce ‘Rosso’, utilises multiple low-cost design innovations to obtain Doppler velocities for sun-like and M-dwarf stars at 75,000 spectra over a 580-930 nm range for the Rosso channel. Simultaneous calibration is provided by a single-mode pulsed laser frequency comb in tandem with a traditional arc lamp. A bundle of 19 object fibres ensures full sampling of stellar targets from the AAT site. Veloce is housed in dual environmental enclosures that maintain positive air pressure at a stability of ±0.3 mbar, with a thermal stability of ±0.01 K on the optical bench. We present a technical overview and early performance data from Australia's next major spectroscopic machine
    corecore