36 research outputs found

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Get PDF
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep-wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 Ă— 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 Ă— 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Full text link
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep–wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 × 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 × 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    Análise de Política Externa e Política Externa Brasileira: trajetória, desafios e possibilidades de um campo de estudos

    Full text link

    Assessment of urban microbiome assemblies with the help of targeted in silico gold standards

    No full text
    Abstract Background Microbial communities play a crucial role in our environment and may influence human health tremendously. Despite being the place where human interaction is most abundant we still know little about the urban microbiome. This is highlighted by the large amount of unclassified DNA reads found in urban metagenome samples. The only in silico approach that allows us to find unknown species, is the assembly and classification of draft genomes from a metagenomic dataset. In this study we (1) investigate the applicability of an assembly and binning approach for urban metagenome datasets, and (2) develop a new method for the generation of in silico gold standards to better understand the specific challenges of such datasets and provide a guide in the selection of available software. Results We applied combinations of three assembly (Megahit, SPAdes and MetaSPAdes) and three binning tools (MaxBin, MetaBAT and CONCOCT) to whole genome shotgun datasets from the CAMDA 2017 Challenge. Complex in silico gold standards with a simulated bacterial fraction were generated for representative samples of each surface type and city. Using these gold standards, we found the combination of SPAdes and MetaBAT to be optimal for urban metagenome datasets by providing the best trade-off between the number of high-quality genome draft bins (MIMAG standards) retrieved, the least amount of misassemblies and contamination. The assembled draft genomes included known species like Propionibacterium acnes but also novel species according to respective ANI values. Conclusions In our work, we showed that, even for datasets with high diversity and low sequencing depth from urban environments, assembly and binning-based methods can provide high-quality genome drafts. Of vital importance to retrieve high-quality genome drafts is sequence depth but even more so a high proportion of the bacterial sequence fraction too achieve high coverage for bacterial genomes. In contrast to read-based methods relying on database knowledge, genome-centric methods as applied in this study can provide valuable information about unknown species and strains as well as functional contributions of single community members within a sample. Furthermore, we present a method for the generation of sample-specific highly complex in silico gold standards. Reviewers This article was reviewed by Craig Herbold, Serghei Mangul and Yana Bromberg

    Mass spectrometry uncovers molecular reactivities of coordination and organometallic gold (III) drug candidates in competitive experiments that correlate with their biological effects

    No full text
    Mass spectrometry reveals profound differences in the reactivity of coordinative and organometallic gold(III) drug candidates to bionucleophiles, which impact their proposed modes of action targeting the selenoenzyme thioredoxin reductase. This provides a link between molecular reactivity and biological activity in vitro

    Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels

    No full text
    Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients’ quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development

    Coffee consumption modulates inflammatory processes in an individual fashion

    No full text
    Anti-inflammatory effects of coffee consumption have been reported to be caused by caffeine and adenosine receptor signaling. However, contradictory effects have been observed. Many kinds of chronic diseases are linked to inflammation; therefore a profound understanding of potential effects of coffee consumption is desirable. We performed ex vivo experiments with eight individuals investigating peripheral blood mononuclear cells isolated from venous blood before and after coffee consumption, as well as in vitro experiments applying caffeine on isolated cells. After in vitro inflammatory stimulation of the cells, released cytokines, chemokines and eicosanoids were determined and quantified using targeted mass spectrometric methods. Remarkably, the release of inflammation mediators IL6, IL8, GROA, CXCL2, CXCL5 as well as PGA2, PGD2, PGE2, LTC4, LTE4 and 15S-HETE was significantly affected after coffee consumption. While in several individuals coffee consumption or caffeine treatment caused significant down-regulation of most inflammation mediators, in other healthy individuals exactly the opposite effects were observed. Ruling out age, sex, coffee consumption habits, the metabolic kinetics of caffeine in blood and the individual amount of regulatory T-cells or CD39 expression as predictive parameters, we demonstrated here that coffee consumption may have significant pro- or anti-inflammatory effects in an individual fashion

    Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma

    No full text
    Pathophysiologies of cancer-associated syndromes such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA, and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44, and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alter levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia

    Multi-omics analysis of serum samples demonstrates reprogramming of organ functions via systemic calcium mobilization and platelet activation in metastatic melanoma

    No full text
    Pathophysiologies of cancer-associated syndroms such as cachexia are poorly understood and no routine biomarkers have been established, yet. Using shotgun proteomics, known marker molecules including PMEL, CRP, SAA and CSPG4 were found deregulated in patients with metastatic melanoma. Targeted analysis of 58 selected proteins with multiple reaction monitoring was applied for independent data verification. In three patients, two of which suffered from cachexia, a tissue damage signature was determined, consisting of nine proteins, PLTP, CD14, TIMP1, S10A8, S10A9, GP1BA, PTPRJ, CD44 and C4A, as well as increased levels of glycine and asparagine, and decreased levels of polyunsaturated phosphatidylcholine concentrations, as determined by targeted metabolomics. Remarkably, these molecules are known to be involved in key processes of cancer cachexia. Based on these results, we propose a model how metastatic melanoma may lead to reprogramming of organ functions via formation of platelet activating factors from long-chain polyunsaturated phosphatidylcholines under oxidative conditions and via systemic induction of intracellular calcium mobilization. Calcium mobilization in platelets was demonstrated to alterate levels of several of these marker molecules. Additionally, platelets from melanoma patients proved to be in a rather exhausted state, and platelet-derived eicosanoids implicated in tumor growth were found massively increased in blood from three melanoma patients. Platelets were thus identified as important source of serum protein and lipid alterations in late stage melanoma patients. As a result, the proposed model describes the crosstalk between lipolysis of fat tissue and muscle wasting mediated by oxidative stress, resulting in the metabolic deregulations characteristic for cachexia

    Selective Arylation of Selenocysteine of Thioredoxin Reductase 1 by an Organogold Compound: Expanding the Tool-Box of Metal-Templated Reactions in Cancer Cells

    No full text
    Cyclometalated gold(III) complexes have been reported to template C-S cross-coupling reactions in a biological environment and acting as modifiers of cysteine residues. To broaden the scope of organogold complexes for covalent protein post-translational modification in cancer cells, an oxime-containing C^N-cyclometalated gold(III) compound was synthesised featuring a carboxylic acid group for either immobilisation on amine-bearing solid support (Au), or functionalisation with a fluorescent tag (Au-Fluo). Live-cell imaging revealed that Au-Fluo distributed evenly into SW480 colon carcinoma cells, with a slight preference for the nuclear and nucleolar compartments. Thioredoxin reductase 1 (TXNRD1) was observed as the major interactor of Au from SW480 cell lysates in chemoproteomic approaches and a 2 : 1 binding stoichiometry resulted from titration-dependent pull-downs. Direct interactions confirmed a high reactivity of Au towards the catalytic CysSec-dyad at the C-terminus of TXNRD1 and revealed double arylation events at this motif. Therefore, the observed Au-templated arylation of selenocysteine likely contributes to the compound’s biological effects. Proteome profiling of SW480 cancer cells treated with sub-cytotoxic concentrations of Au revealed an apparent reduction of the available selenium pool by down-regulating the detected selenoproteins, except TXNRD1. Additionally, Au treatment induced the NRF2-KEAP1 stress response, pointing towards a disturbance of the intracellular redox balance by Au-mediated covalent targeting of TXNRD1. Inhibition of heme oxygenase-1 (HMOX1), the most strongly induced NRF2-target, showed pronounced synergism with Au treatment. Overall, organogold compounds, templating the formation of C–S(Se) bonds in cells as a novel mode of action, hold promise for the targeted modification of (onco)proteins
    corecore