143 research outputs found

    Evaluating the effectiveness of a radiation safety training intervention for oncology nurses: a pretest – intervention – posttest study

    Get PDF
    BACKGROUND: Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. METHODS: A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. RESULTS: As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. CONCLUSION: The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses

    Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p

    Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel

    Get PDF
    Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues

    Skin Vaccination against Cervical Cancer Associated Human Papillomavirus with a Novel Micro-Projection Array in a Mouse Model

    Get PDF
    Background: Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch (TM)) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV) vaccine (Gardasil (R)) commonly used as a prophylactic vaccine against cervical cancer

    Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development

    Get PDF
    Background: Lysine-specific histone demethylase 5C (KDM5C) belongs to the jumonji family of demethylases and is specific for the di- and tri-demethylation of lysine 4 residues on histone 3 (H3K4 me2/3). KDM5C is expressed in the brain and skeletal muscles of humans and is associated with various biologically significant processes. KDM5C is known to be associated with X-linked mental retardation and is also involved in the development of cancer. However, the developmental significance of KDM5C has not been explored yet. In the present study, we investigated the physiological roles of KDM5C during Xenopus laevis embryonic development. Results: Loss-of-function analysis using kdm5c antisense morpholino oligonucleotides indicated that kdm5c knockdown led to small-sized heads, reduced cartilage size, and malformed eyes (i.e., small-sized and deformed eyes). Molecular analyses of KDM5C functional roles using whole-mount in situ hybridization, -galactosidase staining, and reverse transcription-polymerase chain reaction revealed that loss of kdm5c resulted in reduced expression levels of neural crest specifiers and genes involved in eye development. Furthermore, transcriptome analysis indicated the significance of KDM5C in morphogenesis and organogenesis. Conclusion: Our findings indicated that KDM5C is associated with embryonic development and provided additional information regarding the complex and dynamic gene network that regulates neural crest formation and eye development. This study emphasizes the functional significance of KDM5C in Xenopus embryogenesis; however, further analysis is needed to explore the interactions of KDM5C with specific developmental genes

    Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program.</p> <p>Aims</p> <p>The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba).</p> <p>Methods/Design</p> <p>This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses, psychometric analyses, multi-level modeling, and mixed-method analyses.</p> <p>Discussion</p> <p>Three key challenging areas associated with conducting this project are discussed: sampling, participant recruitment, and sample retention; survey administration (with unregulated caregivers); and the provision of a stable set of study definitions to guide the project.</p

    Cardiovascular magnetic resonance in systemic hypertension

    Get PDF
    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension
    corecore