15 research outputs found

    Chitin determination on marine seston in a shallow temperate estuary (Argentina)

    Get PDF
    A quitina é um dos biopolímeros mais abundantes no planeta. A quitina foi quantificada em frações do seston, com a finalidade de obter a primeira caracterização deste polímero no Estuário de Bahía Blanca. A amostragem foi realizada durante o inverno e o verão em dois locais: em um canal de maré não impactado (Bahía del Medio, BM) e em um setor de descarga de esgoto (Canal Vieja, CV). Os maiores valores de quitina foram observados na fração seston ; 500 µM) não excederam ~ 1% de quitina total. A maior concentração de quitina no seston < 20 µM sugere que essa fração é um grande reservatório deste biopolímero, contribuindo para a matéria orgânica para os microorganismos na cadeia alimentar do Estuário de Bahía Blanca. Este é o primeiro estudo sobre as possíveis fontes de quitina em ecossistemas marinhos na Argentina.Chitin is one of the most abundant biopolymers in the planet. Chitin was quantified in seston fractions in order to obtain the first characterization of this polymer in the Bahía Blanca Estuary. Sampling was conducted at two sites: a non- impacted tidal channel -Bahía del Medio (BM)- and a sewage discharge sector -Canal Vieja (CV)-, during winter and summer. The highest values of chitin were observed in the seston fraction ;500 µm) did not exceed ~1% of total chitin.. The higher concentration of chitin in sesto

    Environmental Drivers of Free-Living vs. Particle-Attached Bacterial Community Composition in the Mauritania Upwelling System

    Get PDF
    Saharan dust input and seasonal upwelling along North–West Africa provide a model system for studying microbial processes related to the export and recycling of nutrients. This study offers the first molecular characterization of prokaryotic particle-attached (PA; &gt;3.0 μm) and free-living (FL; 0.2–3.0 μm) players in this important ecosystem during August 2016. Environmental drivers for alpha-diversity, bacterial community composition, and differences between FL and PA fractions were identified. The ultra-oligotrophic waters off Senegal were dominated by Cyanobacteria while higher relative abundances of Alphaproteobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes (known particle-degraders) occurred in the upwelling area. Temperature, proxy for different water masses, was the best predictor for changes in FL communities. PA community variation was best explained by temperature and ammonium. Bray Curtis dissimilarities between FL and PA were generally very high and correlated with temperature and salinity in surface waters. Greatest similarities between FL and PA occurred at the deep chlorophyll maximum, where bacterial substrate availability was likely highest. This indicates that environmental drivers do not only influence changes among FL and PA communities but also differences between them. This could provide an explanation for contradicting results obtained by different studies regarding the dissimilarity/similarity between FL and PA communities and their biogeochemical functions

    Changes in Coastal Benthic Algae Succession Trajectories and Assemblages Under Contrasting Nutrient and Grazer Loads

    Get PDF
    Eutrophication plays a crucial role in coastal systems, driving changes in the composition and abundance of flora and fauna with consequent effects for the entire ecosystem. Sensitive to nutrient levels, micro- and macroalgal blooms serve as valuable indicators of eutrophication. The San Antonio Bay (Northern Argentinean Patagonia, 40° 43′ S, 64° 56′ W) provides an appropriate system to study in situ eutrophication processes on coastal communities. In a multi-scale approach, using two different kind of settlement substrates (micro: polyethylene terephthalate, and macro: ceramic), the present study followed benthic algal dynamics over one year, distinguishing changes in natural succession and seasonality. Strong differences were found in the biofilm assemblages after three days, marked by tube dwelling diatoms and Cocconeis spp. under high nutrient-grazer conditions and needle like diatoms (e.g. Nitzschia spp., Tabularia spp.) under lower nutrient-grazer loads. The succession continued by the colonization of macroalgae, with a higher recruitment rate in the nutrient and grazer rich environment with a concomitant higher diversity. Our results show that under higher nutrient-grazer conditions natural benthic succession not only differs in trajectory but in its final taxa composition promoting higher biodiversity and biomass accumulation. In addition, taxa specific substrate preferences interfere with the observed eutrophication pattern, suggesting substrate dependant interrelations between the bloom forming taxa. These findings provide evidence that nutrient enrichment can not only affect an established assemblage but also affect the early succession stages, changing the succession trajectory and thus the final assemblage.Facultad de Ciencias Naturales y Muse

    Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects

    No full text
    The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (∼9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ∼83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ13C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ15N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management

    Planktonic trophic interactions in a human-impacted estuary of Argentina: a fatty acid marker approach

    Get PDF
    Few studies have been made on planktonic food webs of temperate ecosystems, especially those from the Southern Atlantic Ocean, using molecular biomarkers. The fatty acid compositions of suspended particulate matter (SPM), microplankton and mesozooplankton were studied during summer and winter at a sewage-impacted and a control site in the Bahıa Blanca Estuary (Argentina). The aim was to identify trophic relationships on a spatial and seasonal scale and to detect allochthonous inputs to the food web. Fatty acid trends were consistent with the seasonal succession of the plankton community structure supporting our underlying hypothesis that regional seasonality is mostly responsible for changes in fatty acid composition. Sewage had no clear impact on the fatty acids and may not be a significant source of SPM in the estuary. However, at the sewage site the composition of the SPM was more related to terrestrially derived compounds, diatoms and bacteria, and mesozooplankton fatty acids suggested grazing on terrestrial components and on diatoms over flagellates. Saltmarshes likely have a crucial role as the main contributors to the organic fraction of SPM followed by plankton. The seasonal fatty acid pattern of the mesozooplankton indicated different feeding strategies suggesting an active feeding mode during summer and a more terrestrially associated diet in winter. The fatty acid trophic marker approach provided relevant information to clarify planktonic trophic interactions and to trace the origin of organic matter in this highly dynamic temperate coastal system

    Towards the outwelling hypothesis in a Patagonian estuary: First support from lipid markers and bacterial communities

    Get PDF
    Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary

    Insights into the bacterial community composition of farmed Caulerpa lentillifera: A comparison between contrasting health states

    No full text
    The bacterial communities of Caulerpa lentillifera were studied during an outbreak of an unknown disease in a sea grape farm from Vietnam. Clear differences between healthy and diseased cases were observed at the order, genus, and Operational Taxonomic Unit (OTU) level. A richer diversity was detected in the diseased thalli of C. lentillifera, as well as the dominance of the orders Flavobacteriales (phylum Bacteroidetes) and Phycisphaerales (Planctomycetes). Aquibacter, Winogradskyella, and other OTUs of the family Flavobacteriaceae were hypothesized as detrimental bacteria, this family comprises some well-known seaweed pathogens. Phycisphaera together with other Planctomycetes and Woeseia were probably saprophytes of C. lentillifera. The Rhodobacteraceae and Rhodovulum dominated the bacterial community composition of healthy C. lentillifera. The likely beneficial role of Bradyrhizobium, Paracoccus, and Brevundimonas strains on nutrient cycling and phytohormone production was discussed. The bleaching of diseased C. lentillifera might not only be associated with pathogens but also with an oxidative response. This study offers pioneering insights on the co-occurrence of C. lentillifera-attached bacteria, potential detrimental or beneficial microbes, and a baseline for understanding the C. lentillifera holobiont. Further applied and basic research is urgently needed on C. lentillifera microbiome, shotgun metagenomic, metatranscriptomic, and metabolomic studies as well as bioactivity assays are recommended

    Chitin determination on marine seston in a shallow temperate estuary (Argentina)

    No full text
    ABSTRACT Chitin is one of the most abundant biopolymers in the planet. Chitin was quantified in seston fractions in order to obtain the first characterization of this polymer in the Bahía Blanca Estuary. Sampling was conducted at two sites: a non- impacted tidal channel -Bahía del Medio (BM)- and a sewage discharge sector -Canal Vieja (CV)-, during winter and summer. The highest values of chitin were observed in the seston fraction 500 µm) did not exceed ~1% of total chitin.. The higher concentration of chitin in seston <20 µm suggests that this fraction is a large reservoir of this biopolymer contributing to organic matter for microorganisms in the food web of the Bahía Blanca Estuary. This study is also the first report on the possible sources of chitin in Argentina marine ecosystems
    corecore