80 research outputs found
Familial Multiple Myeloma: Report on Two Families and Discussion of Screening Options
Multiple myeloma (MM) is a relatively rare haematological malignancy seen in older persons. It has an unknown aetiology and usually occurs incidentally within a family. However, several families have been reported with multiple cases of MM, so that the existence of hereditary MM has been postulated although no causative germline mutations have been detected so far. First-degree relatives of MM patients have been reported to have a relative risk between two and four times higher than normal of developing MM and we presume the risks are higher for relatives in the case of familial MM. Here we report on two families with MM who requested presymptomatic screening of healthy relatives. Although risk estimates for asymptomatic relatives in these types of families are not available, a clinically significant risk of developing MM cannot be excluded. We suggest that, in a research setting, screening for MM could be offered to individuals with more than one first-degree affected relative, or to those with one first-degree and at least one second-degree relative with MM. We propose a screening programme of annual protein electrophoresis of blood and urine, starting at age 40 (or earlier if a family member presented with MM at a younger age)
A recurrent missense variant in HARS2 results in variable sensorineural hearing loss in three unrelated families
HARS2 encodes mitochondrial histidyl-tRNA synthetase (HARS2), which links histidine to its cognate tRNA in the mitochondrial matrix. Biallelic variants in HARS2 are associated with Perrault syndrome, a rare recessive condition characterized by sensorineural hearing loss in both sexes and primary ovarian insufficiency in 46,XX females. Some individuals with Perrault syndrome have a broader phenotypic spectrum with neurological features, including ataxia and peripheral neuropathy. Here, we report a recurrent variant in HARS2 in association with sensorineural hearing loss. In affected individuals from three unrelated families, the variant HARS2 c.1439G>A p.(Arg480His) is present as a heterozygous variant in trans to a putative pathogenic variant. The low prevalence of the allele HARS2 c.1439G>A p.(Arg480His) in the general population and its presence in three families with hearing loss, confirm the pathogenicity of this variant and illustrate the presentation of Perrault syndrome as nonsyndromic hearing loss in males and prepubertal females
Clinical and genetic characterization of individuals with predicted deleterious PHIP variants
Heterozygous deleterious variants in PHIP have been associated with behavioral problems, intellectual disability/developmental delay, obesity/overweight, and dysmorphic features (BIDOD syndrome). We report an additional 10 individuals with pleckstrin homology domain-interacting protein (PHIP)-predicted deleterious variants (four frameshift, three missense, two nonsense, and one splice site; six of which are confirmed de novo). The mutation spectrum is diverse, and there is no clustering of mutations across the protein. The clinical phenotype of these individuals is consistent with previous reports and includes behavioral problems, intellectual disability, developmental delay, hypotonia, and dysmorphic features. The additional individuals we report have a lower frequency of obesity than previous reports and a higher frequency of gastrointestinal problems, social deficits, and behavioral challenges. Characterizing additional individuals with diverse mutations longitudinally will provide better natural history data to assist with medical management and educational and behavioral support
Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics
The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P<0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient
A case series of familial ARID1B variants illustrating variable expression and suggestions to update the ACMG criteria
ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses
Genome sequencing in families with congenital limb malformations
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02295-y
Amniotic band syndrome and limb body wall complex in Europe 1980-2019.
Amniotic band syndrome (ABS) and limb body wall complex (LBWC) have an overlapping phenotype of multiple congenital anomalies and their etiology is unknown. We aimed to determine the prevalence of ABS and LBWC in Europe from 1980 to 2019 and to describe the spectrum of congenital anomalies. In addition, we investigated maternal age and multiple birth as possible risk factors for the occurrence of ABS and LBWC. We used data from the European surveillance of congenital anomalies (EUROCAT) network including data from 30 registries over 1980-2019. We included all pregnancy outcomes, including live births, stillbirths, and terminations of pregnancy for fetal anomalies. ABS and LBWC cases were extracted from the central EUROCAT database using coding information responses from the registries. In total, 866 ABS cases and 451 LBWC cases were included in this study. The mean prevalence was 0.53/10,000 births for ABS and 0.34/10,000 births for LBWC during the 40 years. Prevalence of both ABS and LBWC was lower in the 1980s and higher in the United Kingdom. Limb anomalies and neural tube defects were commonly seen in ABS, whereas in LBWC abdominal and thoracic wall defects and limb anomalies were most prevalent. Twinning was confirmed as a risk factor for both ABS and LBWC. This study includes the largest cohort of ABS and LBWC cases ever reported over a large time period using standardized EUROCAT data. Prevalence, clinical characteristics, and the phenotypic spectrum are described, and twinning is confirmed as a risk factor
Establishing the phenotypic spectrum of ZTTK syndrome by analysis of 52 individuals with variants in SON
Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated. We present the phenotypic abnormalities in 52 individuals, including 17 individuals who have not been reported before. In total, loss-of-function variants were detected in 49 individuals (de novo in 47, inheritance unknown in 2), and in 3, a missense variant was observed (2 de novo, 1 inheritance unknown). Phenotypic abnormalities, systematically collected and analyzed in Human Phenotype Ontology, were found in all organ systems. Significant inter-individual phenotypic variability was observed, even in individuals with the same recurrent variant (n = 13). SON haploinsufficiency was previously shown to lead to downregulation of downstream genes, contributing to specific phenotypic features. Similar functional analysis for one missense variant, however, suggests a different mechanism than for heterozygous loss-of-function. Although small in numbers and while pathogenicity of these variants is not certain, these data allow for speculation whether de novo missense variants cause ZTTK syndrome via another mechanism, or a separate overlapping syndrome. In conclusion, heterozygous loss-of-function variants in SON define a recognizable syndrome, ZTTK, associated with a broad, severe phenotypic spectrum, characterized by a large inter-individual variability. These observations provide essential information for affected individuals, parents, and healthcare professionals to ensure appropriate clinical management
CERT1 mutations perturb human development by disrupting sphingolipid homeostasis
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome
- …