1,096 research outputs found
Stellar Feedback in the ISM Revealed by Wide-Field Far-Infrared Spectral-Imaging
The radiative and mechanical interaction of stars with their environment
drives the evolution of the ISM and of galaxies as a whole. The far-IR emission
(lambda ~30 to 350 microns) from atoms and molecules dominates the cooling of
the warm gas in the neutral ISM, the material that ultimately forms stars.
Far-IR lines are thus the most sensitive probes of stellar feedback processes,
and allow us to quantify the deposition and cycling of energy in the ISM. While
ALMA (in the (sub)mm) and JWST (in the IR) provide astonishing sub-arcsecond
resolution images of point sources and their immediate environment, they cannot
access the main interstellar gas coolants, nor are they designed to image
entire star-forming regions (SFRs). Herschel far-IR photometric images of the
interstellar dust thermal emission revealed the ubiquitous large-scale
filamentary structure of SFRs, their mass content, and the location of
thousands of prestellar cores and protostars. These images, however, provide a
static view of the ISM: not only they dont constrain the cloud dynamics,
moreover they cannot reveal the chemical composition and energy transfer within
the cloud, thus giving little insight into the regulation process of star
formation by stellar feedback. In this white paper we emphasize the need of a
space telescope with wide-field spectral-imaging capabilities in the critical
far-IR domain.Comment: White Paper submitted to the Astro 2020 Decadal Survey on Astronomy
and Astrophysics (National Academies of Science, Engineering, and Medicine
HCO, c-C3H and CF+ : three new molecules in diffuse, translucent and "spiral-arm'' clouds
%methods {We used the EMIR receiver and FTS spectrometer at the IRAM 30m to
construct absorption spectra toward bright extra-galactic background sources at
195 kHz spectral resolution ( 0.6 \kms). We used the IRAM Plateau de
Bure interferometer to synthesize absorption spectra of \hthcop\ and HCO toward
the galactic HII region W49.} %results {HCO, \cc3h\ and CF\p\ were detected
toward the blazars \bll\ and 3C111 having \EBV\ = 0.32 and 1.65 mag. HCO was
observed in absorption from ``spiral-arm'' clouds in the galactic plane
occulting W49. The complement of detectable molecular species in the 85 - 110
GHz absorption spectrum of diffuse/translucent gas is now fully determined at
rms noise level at \EBV\ = 0.32 mag (\AV\ = 1 mag)
and /\EBV\ mag overall.} %conclusions {As
with OH, \hcop\ and \cch, the relative abundance of \cc3h\ varies little
between diffuse and dense molecular gas, with N(\cc3h)/N({\it o-c}-\c3h2)
0.1. We find N(CF\p)/N(HCO\p) , N(CF\p)/N(\cch)
0.005-0.01 and because N(CF\p) increases with \EBV\ and with the
column densities of other molecules we infer that fluorine remains in the gas
phase as HF well beyond \AV\ = 1 mag. We find N(HCO)/N(HCO\p) = 16
toward \bll, 3C111 and the 40 km/s spiral arm cloud toward W49, implying X(HCO)
, about 10 times higher than in dark clouds. The behaviour of
HCO is consistent with previous suggestions that it forms from C\p\ and \HH,
even when \AV\ is well above 1 mag. The survey can be used to place useful
upper limits on some species, for instance N(\hhco)/N(\HH CS) 32 toward
3C111, compared to 7 toward TMC-1, confirming the possibility of a gas phase
formation route to \hhco.}Comment: A\%A in pres
Interstellar Hydrides
Interstellar hydrides -- that is, molecules containing a single heavy element
atom with one or more hydrogen atoms -- were among the first molecules detected
outside the solar system. They lie at the root of interstellar chemistry, being
among the first species to form in initially-atomic gas, along with molecular
hydrogen and its associated ions. Because the chemical pathways leading to the
formation of interstellar hydrides are relatively simple, the analysis of the
observed abundances is relatively straightforward and provides key information
about the environments where hydrides are found. Recent years have seen rapid
progress in our understanding of interstellar hydrides, thanks largely to
far-IR and submillimeter observations performed with the Herschel Space
Observatory. In this review, we will discuss observations of interstellar
hydrides, along with the advanced modeling approaches that have been used to
interpret them, and the unique information that has thereby been obtained.Comment: Accepted for publication in Annual Review of Astronomy and
Astrophysics 2016, Vol. 5
The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds
The ionization fraction plays a key role in the chemistry and dynamics of
molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the
Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the
Photodissociation Region (PDR), as a template to investigate the ionization
fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+
J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and
new HOC+ and CO+ observations. We compare self-consistently the observed
spatial distribution and line intensities with detailed depth-dependent
predictions of a PDR model coupled with a nonlocal radiative transfer
calculation. The chemical network includes deuterated species, 13C
fractionation reactions and HCO+/HOC+ isomerization reactions. The role of
neutral and charged PAHs in the cloud chemistry and ionization balance is
investigated. The detection of HOC+ reactive ion towards the Horsehead PDR
proves the high ionization fraction of the outer UV irradiated regions, where
we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs,
we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...],
lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of
zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization
fraction gradient and increases the required metal abundance. The ionization
fraction in the Horsehead edge follows a steep gradient, with a scale length of
~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few
times ~10(-9) in the core. PAH^- anions play a role in the charge balance of
the cold and neutral gas if substantial amounts of free PAHs are present ([PAH]
>10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A
(english not edited
Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91
We report a detection of the excited 2_(20)-2_(11) rotational transition of para-H_2O in APM 08279+5255 using the IRAM Plateau de Bure Interferometer. At z = 3.91, this is the highest-redshift detection of interstellar water to date. From large velocity gradient modeling, we conclude that this transition is predominantly radiatively pumped and on its own does not provide a good estimate of the water abundance. However, additional water transitions are predicted to be detectable in this source, which would lead to an improved excitation model. We also present a sensitive upper limit for the hydrogen fluoride (HF) J = 1-0 absorption toward APM 08279+5255. While the face-on geometry of this source is not favorable for absorption studies, the lack of HF absorption is still puzzling and may be indicative of a lower fluorine abundance at z = 3.91 compared with the Galactic interstellar medium
Simulated CII observations for SPICA/SAFARI
We investigate the case of CII 158 micron observations for SPICA/SAFARI using
a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse
interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists
of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in
length. The interplay of thermal instability, magnetic field and self-gravity
leads to the formation of cold, dense clumps within a warm, turbulent
interclump medium. We sample several clumps along a line of sight through the
simulated cube and use them as input density profiles in the Meudon PDR code.
This allows us to derive intensity predictions for the CII 158 micron line and
provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The
Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins
of Planets and Galaxies" (July 2009, Oxford, United Kingdom
The IRAM-30m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas
Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively
easily detected in our Galaxy and in other galaxies. We constrain their
chemistry through observations of two positions in the Horsehead edge: the
photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just
behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some
of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We
derived column densities and abundances through Bayesian analysis using a large
velocity gradient radiative transfer model. We report the first clear detection
of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and
6 at the dense core position, and we resolved its hyperfine structure for 3
lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR
position. We computed new electron collisional rate coefficients for CH3CN, and
we found that including electron excitation reduces the derived column density
by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR
than in the dense core, HC3N has similar abundance at both positions. The
isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase
chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated
gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of
grains are destroyed through photo-desorption or thermal-evaporation in PDRs,
and through sputtering in shocks. (abridged)Comment: Accepted for publication in Astronomy & Astrophysic
High-velocity hot CO emission close to Sgr A*: Herschel/HIFI submillimeter spectral survey toward Sgr A*
The properties of molecular gas, the fuel that forms stars, inside the cavity
of the circumnuclear disk (CND) are not well constrained. We present results of
a velocity-resolved submillimeter scan (~480 to 1250 GHz}) and [CII]158um line
observations carried out with Herschel/HIFI toward Sgr A*; these results are
complemented by a ~2'x2' CO (J=3-2) map taken with the IRAM 30 m telescope at
~7'' resolution. We report the presence of high positive-velocity emission (up
to about +300 km/s) detected in the wings of CO J=5-4 to 10-9 lines. This wing
component is also seen in H2O (1_{1,0}-1_{0,1}) a tracer of hot molecular gas;
in [CII]158um, an unambiguous tracer of UV radiation; but not in [CI]492,806
GHz. This first measurement of the high-velocity CO rotational ladder toward
Sgr A* adds more evidence that hot molecular gas exists inside the cavity of
the CND, relatively close to the supermassive black hole (< 1 pc). Observed by
ALMA, this velocity range appears as a collection of CO (J=3-2) cloudlets lying
in a very harsh environment that is pervaded by intense UV radiation fields,
shocks, and affected by strong gravitational shears. We constrain the physical
conditions of the high positive-velocity CO gas component by comparing with
non-LTE excitation and radiative transfer models. We infer T_k~400 K to 2000 K
for n_H~(0.2-1.0)x10^5 cm^-3. These results point toward the important role of
stellar UV radiation, but we show that radiative heating alone cannot explain
the excitation of this ~10-60 M_Sun component of hot molecular gas inside the
central cavity. Instead, strongly irradiated shocks are promising candidates.Comment: Accepted for publication in A&A Letters ( this v2 includes
corrections by language editor
The Horsehead nebula, a template source for interstellar physics and chemistry
We present a summary of our previous investigations of the physical and
chemical structure of the Horsehead nebula, and discuss how these studies led
to advances on the understanding of the impact of FUV radiation on the
structure of dense interstellar clouds. Specific molecular tracers can be used
to isolate different environments, that are more sensitive to changes in the
FUV radiation or density than the classical tracers of molecular gas : the CO
isotopologues or the dust (sub)millimeter continuum emission. They include the
HCO or CCH radicals for the FUV illuminated interfaces, or the molecular ions
HCO, DCO and other deuterated species (DNC, DCN) for the cold
dense core. We discuss future prospects in the context of Herschel and ALMA
- …