356 research outputs found

    Comparison of electron-ion energy transfer in dense plasmas obtained from numerical simulations and quantum kinetic theory

    Full text link
    We evaluate various analytical models for the electron-ion energy transfer and compare the results to data from molecular dynamics (MD) simulations. The models tested includes energy transfer via strong binary collisions, Landau-Spitzer rates with different choices for the cut-off parameters in the Coulomb logarithm, rates based on Fermi's golden rule (FGR) and theories taking coupled collective modes (CM) into account. In search of a model easy to apply, we first analyze different approximations of the FGR energy transfer rate. Then we investigate several numerical studies using MD simulations and try to uncover CM effects in the data obtained. Most MD data published so far show no distinct CM effects and, thus, can be interpreted within a FGR or binary collision approach. We show that this finding is related to the parameter regime, in particular the initial temperature difference, considered in these investigations.Comment: 9 pages, 6 figures, 1 tabl

    Ramp wave loading experiments driven by heavy ion beams: a feasibility study

    Get PDF
    A new design for heavy-ion beam driven ramp wave loading experiments is suggested and analyzed. The proposed setup utilizes the long stopping ranges and the variable focal spot geometry of the high-energy uranium beams available at the GSI Helmholtzzentrum für Schwerionenforschung and Facility for Antiproton and Ion Research accelerator centers in Darmstadt, Germany. The release wave created by ion beams can be utilized to create a planar ramp loading of various samples. In such experiments, the predicted high pressure amplitudes (up to 10 Mbar) and short timescales of compression (<10 ns) will allow to test the time-dependent material deformation at unprecedented extreme conditions

    A reduced coupled-mode description for the electron-ion energy relaxation in dense matter

    Get PDF
    We present a simplified model for the electron-ion energy relaxation in dense two-temperature systems that includes the effects of coupled collective modes. It also extends the standard Spitzer result to both degenerate and strongly coupled systems. Starting from the general coupled-mode description, we are able to solve analytically for the temperature relaxation time in warm dense matter and strongly coupled plasmas. This was achieved by decoupling the electron-ion dynamics and by representing the ion response in terms of the mode frequencies. The presented reduced model allows for a fast description of temperature equilibration within hydrodynamic simulations and an easy comparison for experimental investigations. For warm dense matter, both fluid and solid, the model gives a slower electron-ion equilibration than predicted by the classical Spitzer result

    Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas

    Get PDF
    The effects of collective modes on the temperature relaxation in fully ionized, weakly coupled plasmas are investigated. A coupled mode (CM) formula for the electron-ion energy transfer is derived within the random phase approximation and it is shown how it can be evaluated using standard methods. The CM rates are considerably smaller than rates based on Fermi's golden rule for some parameters and identical for others. It is shown how the CM effects are connected to the occurrence of ion acoustic modes and when they occur. Interestingly, CM effects occur also for plasmas with very high electron temperatures; a regime, where the Landau–Spitzer approach is believed to be accurate

    Dynamic ion structure factor of warm dense matter

    Get PDF
    The dynamics of the ion structure in warm dense matter is determined by molecular dynamics simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin approach, a hydrodynamic model, and the method of moments with local constraints are capable of reproducing the numerical results but have rather limited predictive powers as they all need some numerical data as input. The method of moments is found to be the most promising

    Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations

    Get PDF
    We investigate the microscopic structure of strongly coupled ions in warm dense matter using ab initio simulations and hypernetted chain (HNC) equations. We demonstrate that an approximate treatment of quantum effects by weak pseudopotentials fails to describe the highly degenerate electrons in warm dense matter correctly. However, one-component HNC calculations for the ions agree well with first-principles simulations if a linearly screened Coulomb potential is used. These HNC results can be further improved by adding a short-range repulsion that accounts for bound electrons. Examples are given for recently studied light elements, lithium and beryllium, and for aluminum where the extra short-range repulsion is essential

    An adaptive model for the optical properties of excited gold

    Full text link
    We study the temperature-dependent optical properties of gold over a broad energy spectrum covering photon energies below and above the interband threshold. We apply a semi-analytical Drude-Lorentz model with temperature-dependent oscillator parameters. Our approximations are based on the distribution of electrons over the active bands with a density of states provided by density functional theory. This model can be easily adapted to other materials with similar band structures and can also be applied to the case of occupational nonequilibrium. Our calculations show a strong enhancement of the intraband response with increasing electron temperature while the interband component decreases. Moreover, our model compares well with density functional theory-based calculations for the reflectivity of highly excited gold and reproduces many of its key features. Applying our methods to thin films shows a sensitive nonlinear dependence of the reflection and absorption on the electron temperature. These features are more prominent at small photon energies and can be highlighted with polarized light. Our findings offer valuable insights for modeling ultrafast processes, in particular, the pathways of energy deposition in laser-excited samples
    corecore