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Abstract

We investigate the effects of collective modes on the temperature relaxation in fully ionized,

weakly coupled plasmas. A coupled mode (CM) formula for the electron-ion energy transfer is

derived within the random phase approximation and we show how it can be evaluated using stan-

dard methods. The CM rates are considerably smaller than rates based on Fermi’s Golden Rule

for some parameters and identical for others. We show how the CM effects are connected to the

occurrence of ion acoustic modes and when they occur. Interestingly, CM effects occur also for

plasmas with very high electron temperatures; a regime, where the Landau-Spitzer approach is

believed to be accurate.

PACS numbers: 52.25.Dg, 52.25.Kn, 52.27.Gr
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I. INTRODUCTION

Sophisticated techniques to create and probe states with high energy density make it

nowadays possible to test theories for dense plasmas. Properties investigated include the

equation of state [1–3], collective phenomena [4], phase transitions [5–7], and the ion struc-

ture [8, 9]. As large and fast energy inputs are required, states far from equilibrium are

created. The subsequent relaxation reveals many information on dynamic processes hid-

den or hard to probe in equilibrium. New ultra-fast x-ray sources [6, 10] make it possible

to directly probe such states on a 10 ps time scale which overlaps with the time scale of

temperature equilibration in dense plasmas.

However, the duration of temperature equilibration is still under discussion: the semi-

nal Landau-Spitzer (LS) approach [11, 12] and early simulation results [13] were seriously

questioned when a theory including coupled electron-ion modes found considerably longer

relaxation times [14]. Strong indications for longer relaxations in dense plasmas were also

found experimentally [15–17]. Classical collisions used in the LS approach may be the source

for the deviations. However, a quantum approach for binary collisions yields even larger rates

[18, 19] and, thus, increasing deviations from the CM theory.

Besides, relaxation is often rather complex and involves the interplay of all terms in the

internal energy. Changing correlation and exchange energies [20, 21] and ionization kinetics

including excitations [22–24] have been shown to considerable influence the equilibrium

process.

Here, we focus on the electron-ion energy transfer in fully ionized, weakly coupled plasmas

(see Refs. [25–28] for recent discussion on CM effects). In this limit, we can employ the well-

established and well-tested random phase approximation (RPA) for the dynamic response

functions and the Lenard-Balescu equation [29, 30] for a kinetic description. We use the

quantum versions [31] of both to avoid ambiguities with respect to ad hoc cutoffs. On this

basis, we derive a weak coupling version of the CM formula published by Dharma-wardana &

Perrot [14]. We also obtain a form that can be evaluated by standard integration procedures.

Under certain conditions including systems with high electron temperatures, the CM

theory predicts energy transfer rates that are about a factor of two lower than LS and

FGR rates. These deviations are connected to the occurrence of ion acoustic modes and the

related redistribution of weight in the dynamic response which also explains why the simpler
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FGR formula agrees for other parameters. Based on well-established approximations, the

results may serve as a benchmark. In particular, molecular dynamics simulations relying on

classical mechanics and electron-ion pseudopotentials, applied e.g. in Refs. [32–34], can be

tested against our analytic results.

II. ENERGY TRANSFER RATES

In ideal plasmas, electron-ion energy transfer rates are given by changes of the kinetic

energy of species a via the one-particle Wigner distribution fa

∂

∂t
Ea =

∫ dp

(2πh̄)3

p2

2ma

∂

∂t
fa(p, t) . (1)

Using a general kinetic equation for homogeneous and isotropic systems, i.e., ∂fa/∂t =
∑

b Iab, the energy transfer rates are determined by the type of the collision integral used.

The equations for electrons and ions couple via Iei = Iie and, thus, total energy is conserved.

There exists a hierarchy of kinetic equations [31] which can be divided into two classes: the

first considers only binary collisions (Landau [11] and Boltzmann equations [35]); the second

also includes collective effects (Lenard-Balescu-like equation [29, 30]). In the second kind,

the mutual influence of electrons and ions is included via the common dielectric function

and predicted to strongly modify the electron-ion energy transfer rates [14, 25].

The simplest approach for two-particle interactions considers classical binary collisions.

The corresponding energy transfer rates are given by [11, 12]

∂

∂t
ELS

e→i =
3

2
nekB

Ti − Te

τei

(2)

with the electron-ion relaxation time

τei =
3memi

8
√

2niZ2
i e

4 ln Λ

(

kBTe

me

+
kBTi

mi

)3/2

. (3)

The Coulomb logarithm is used here in the form [18] ln Λ = 0.5 ln(1+λ2
e/(̺

2
⊥

+λ2
dB)) with

the screening length of electrons λe = (kBTe/4πe2ne)
1/2, the distance of closest approach

̺⊥ = Zie
2/mev

2
th, the deBroglie wave length λdB = h̄/mevth, and the thermal velocity vth =

(kBTe/me)
1/2. This form, which follows by considering hyperbolic orbits of the electrons,

has the advantage to give non-negative results even for the dense plasmas.

The problems associated with classical collisions can be overcome within a quantum

description that uses cross sections calculated from the two-particle Schrödinger equation
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[18]. Interestingly, this yields rates for dense plasmas that are larger than the LS approach

predicts.

The collective response of weakly coupled plasmas is described by the random phase

approximation (RPA) given a dielectric function εRPA = 1 − ∑

a Vaa χ0
aa, where χ0

aa are

the density response functions of noninteracting systems. As the mutual influence of the

electrons and ions is naturally included, the modes are fully coupled.

The kinetic equation corresponding to the RPA is the Lenard-Balescu equation [29, 30].

Using it in the energy balance (1) yields (see App. A for the derivation)

∂

∂t
ECM

e→i =−4h̄
∑

i

∫ dk

(2πh̄)3

∞
∫

0

dω

2π
ω

∣

∣

∣

∣

∣

Vei(k)

εRPA(k, ω)

∣

∣

∣

∣

∣

2

× Im χ0
ee(kω) Im χ0

ii(kω) ∆NB(ω) , (4)

where Vei(k) = 4πZe2/k2 is the pure Coulomb potential and ∆NB(ω) = ne
B(ω)−ni

B(ω) is

the difference of the occupation numbers of electron and ion modes, i.e. the Bose function

na
B(ω)=[exp(h̄ω/kBTa)−1]−1. For all degrees of degeneracy, Eq. (4) is applicable for weakly

coupled plasmas where it is equivalent to the expression derived by Dharma-wardana &

Perrot [14] (see App. B). As the RPA describes coupled electron-ion systems, the zeros of

ε(k, ω) define coupled modes (thus, ‘CM’ as label).

Fermi’s golden rule (FGR) yields a more approximate model for the electron-ion energy

transfer. Here, the species are treated independently and, thus, have distinct dielectric

functions εRPA
a =1−Vaa χ0

aa. Accordingly, the expression for the energy transfer rates has a

product of these dielectric functions in the denominator [14, 36]

∂

∂t
EFGR

e→i =−4h̄
∑

i

∫ dk

(2πh̄)3

∞
∫

0

dω

2π

ω |Vei(k)|2

|εe(k, ω)|2 |εi(k, ω)|2

× Im χ0
ee(kω) Im χ0

ii(kω) ∆NB(ω) , (5)

In lowest order, the FGR rate reduces to Landau-Spitzer-like expressions, either with soft

or hard cutoffs [36, 37].

Although the CM (4) and the FGR (5) expressions contain the effects of collective exci-

tations, they describe quite different systems. To evaluate the corresponding differences is

the main purpose of this paper.
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FIG. 1: (Color online) Dispersion relations, Reε(k, ω)=0, for the collective modes in a hydrogen

plasma with n=1022 cm−3, Ti =104 K, and different electron temperatures. In the FGR approach,

an ion plasmon mode exists (upper dotted line) whereas all ion modes become acoustic for coupled

systems.

III. EVALUATION OF THE CM & FGR EXPRESSIONS

The occurrence of collective modes is connected with sharp peaks in ω space. Without

further consideration, these peaks prohibit the evaluation of Eqs. (4) and (5) by standard

integration routines. We will first show under which conditions these modes occur and then

describe the numerical integration procedure.

For the important small k, the mode frequencies are in very good approximation given by

the zeros of the real part of the dielectric function. If the electron-ion coupling is neglected,

both species have the well-known acoustic and plasmon-like branches (see Fig. 1) which

are just scaled by Za and ma. While the acoustic branch is strongly damped, the plasmon

results in a sharp peak in the density response function at the plasmon frequency ωa
pl ≈

(4πZae
2na/ma)

1/2. As the ω-integral is effectively limited to frequencies ω<ωi
pl by the term

Im χ0
ii(k, ω), the electron modes are unimportant here.

The ion modes used in the FGR are independent and have always a plasmon branch.

For coupled systems, the situation is qualitatively different: electron screening turns the
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ion plasmon into a weakly damped ion acoustic branch. Interestingly, this ion acoustic

mode becomes more plasmon-like for larger temperature differences and momenta. For the

important small k values, the modes are however acoustic for all finite electron temperatures.

Fig. 1 also clearly demonstrates that the ion modes in the coupled system cease to exist

if |Te−Ti| becomes too small. The sum over species in the full dielectric function puts strict

limits to the occurrence of ion modes; a fact that is crucial for the understanding of the CM

effect on the energy relaxation. It is well-known that ion acoustic modes exist for Ti ≪ Te

[38]; a more precise analysis (see App. C) shows that either of the relations [39]

Ti ≤ 0.27 · Zi Te for neΛ
3
e ≪ 1 ,

Ti ≤ 0.27 · Zi TF for neΛ
3
e ≫ 1 (6)

must hold to allow for ion acoustic modes in weakly coupled electron-ion systems (neΛ
3
e =

ne(2πh̄2/mekBTe)
3/2 is the degeneracy parameter). The upper case is valid for nondegenerate

electrons; the lower line holds for highly degenerate electrons, where the Fermi temperature,

i.e. TF = h̄2(3π2ne)
2/3/2mekB, sets the scale. Accordingly, sharp ion acoustic modes may

also occur for Te <Ti if the electron density is high enough.

The sharp peaks related to the zeros of the dielectric function represent a challenge for

numerical integration. The FGR formula (5) can nevertheless be integrated in a re-written

form: the integral is split into an unproblematic part without modes and a part including

the modes that can be evaluated using the f-sum rule [40].

Often an analytical evaluation using the low frequency limit of the electron response

function and a linearization of the Bose functions is possible [36, 37]. For such cases, we

find excellent agreement to our numerical treatment. Differences for dense plasmas with

Ti ≫ Te can be traced back to the break-down of the approximations used for the analytical

description.

It is impossible to treat the CM integrand the same way as the electron and ion parts

are not separable. We can however re-arrange the ω-integral in a better way by artificially

decomposing the total dielectric function into electron and ion parts: εRPA =1+(εe−1)+(εi−1).

Then we use Im εRPA
a (k, ω) = Vaa(k) Im χ0

aa(k, ω) to express the density response functions

χ0
aa(k, ω) in terms of dielectric functions. For fully ionized plasmas, V 2

ei = ViiVee holds and
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FIG. 2: (Color online) Combination of dielectric functions in the CM and FGR expressions, i.e.

fCM = ImεeImεi/|ε|2 and fFGR = ImεeImεi/|εe|2|εi|2, respectively. Considered is a small wave

number of k = a−1
B and a hydrogen plasma with Ti = 105 K, Te = 106 K, and n = 1024 cm−3. Note:

the height of the ion plasmon peak in the FGR approach is 1500 a.u.

the ω-integral is transformed into

Iω =

∞
∫

0

dω

2π
ω ∆Nei(ω)

Im εe(k, ω) Im εi(kω)

|εRPA(k, ω)|2
. (7)

This form can still have sharp peaks at the positions of the ion acoustic modes, but these

peaks are limited since

lim
Re ε→0

Im εe(k, ω) Im εi(k, ω)

|εRPA(k, ω)|2

=
Im εe(k, ω) Im εi(k, ω)

|Im εe(k, ω) + Im εi(k, ω)|2
< 1 . (8)

Thus, this rearrangement makes a brute force approach for integrating the CM equation (7)

feasible.

Examples for the ω-integrand for the two approaches are plotted in Fig. 2 for a wave

number small enough for the ion acoustic mode to exists. Clearly, the acoustic mode is

shifted to the left and has a strongly reduced height. Although the particle excitation (left

broad peak) is increased, it cannot compensate the loss in weight. For a pure ion system

(FGR), almost the entire weight stems from the plasmon peak whereas the main contribution

to the CM integral comes from the particle peak.

The difference in mode structure are the basics for the CM effects. Figure 3 demonstrates

that CM effects are caused by small k where the ion acoustic mode exists. These modes are
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FIG. 3: (Color online) Examples for the ω-integral in the CM and FGR expressions for hydrogen

as in Fig. 2.

shifted and reduced in weight; their contributions to the CM integral are of the same order

as the particle peak of the FGR (see Fig. 2) which, in turn, is negligible compared to the ion

plasmon peak. Thus, small k give almost no contribution in the CM expression compared

to the FGR and the CM rates can be significantly reduced if these small k are important.

For large k, neither the ion acoustic nor the ion plasmon mode exists and the CM and FGR

ω-integrals merge.

IV. RESULTS AND DISCUSSION OF THE ENERGY TRANSFER RATES

Based on the methods presented above, we can directly evaluate the CM and FGR ex-

pressions (4) and (5). In a first example, high-density hydrogen with Te >Ti is considered in

Fig. 4. All approaches yield similar curves: increasing rates when electron and ion tempera-

tures are comparable, followed by a maximum, and finally a LS-like asymptotic reduction of

the rates ∼ T 1/2
e . However, considerable quantitative differences arise between the approxi-

mation levels presented.

If Te≈Ti, the FGR and CM results agree since ion acoustic modes do not exist. The LS

rates differ as the Coulomb logarithm is not well defined for dense plasmas with degenerate

electrons. At about Te =106 K, ion acoustic modes start to occur and the CM results show

increasing deviations from the FGR rates. Around Te =107 K, ion acoustic modes are fully

developed. Since they reduce the ω-integral for small k (see Fig. 3), the CM rates show
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FIG. 4: (Color online) Energy transfer rates in fully ionized hydrogen with n = 1026 cm−3 and

Ti =105 K. Curves follow from the CM (4), FGR (5), and LS (2) expressions.

here a considerable lowering. For high electron temperatures, the LS formula is believed to

be applicable. However, our results show that only LS and FGR rates agree in this limit.

The CM formula (4) yields here a considerably reduced energy transfer making CM effects

important for hot fusion plasmas. They only cease to exist for hot ions where no ion acoustic

modes exist.

The relation between the CM and FGR approaches is studied in Fig. 5 in more detail.

The upper panel shows how increasing densities enhance the lowering of the CM energy

transfer rates. Whereas CM effects slowly develop with temperature difference for the lower

densities, they are already present at Te = Ti for densities above n = 1023 cm−3. Here, the

electrons are degenerate with TF >Ti and ion acoustic modes occur independent of Te. An

extreme case is given for n=1026 cm−3 where a lowering of CM rates of up to 90% can be

found.

The effect of the ion temperatures is illustrated in the lower panel of Fig. 5. CM effects

are well established for Ti = 104K, but vanish for higher ion temperatures. Nevertheless,

sufficiently hot electrons always guarantee lower CM rates. Interestingly, the ratio of CM

and FGR rates approaches 1/2 for very high electron temperatures.

Let us analyze the high temperature, low density limit of the CM energy transfer rate in

more detail (see Fig. 6). The CM and FGR approaches do agree in the weak coupling limit if

and only if the temperature difference between the subsystems is sufficiently low so that no

coupled collective modes can be excited. Larger deviations occur for increased temperature
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FIG. 5: (Color online) Ratio of the CM and FGR energy transfer rates for fully ionized hydrogen

as a function of the electron temperature. Panel a) considers various densities while the ion

temperature is constant; panel b) shows results for different ion temperatures at constant density.

All results are obtained within the random phase approximation. The vertical lines mark the

condition Te =Ti.

differences and smaller electron temperatures (more strongly coupled ions; although RPA

is used in Fig. 6). However, even for very large electron temperatures the CM effects still

reduce the coupling between the electron and ion components.

Moreover, FGR and LS have a ratio independent of the temperature difference. In addi-

tion, numerics show, that even in the weakly coupled case with small temperature difference,

FGR and LS curves intersect rather than converge. This is due to the poor cut off in the

Coulomb integral in LS. Thus, the FGR approach rather than LS formula should be used

to compare with experiments or simulations if one searches for coupled mode effects in the

data.

Coupled mode effects are of course more pronounced for higher ion charge states since

here ion acoustic modes already occur for smaller temperature differences (see condition (6))

and also exist for larger k values. Fig. 7 shows an example. Energy transfer rates normal-
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FIG. 7: (Color online) Effect of the (nonequilibrium) ion charge state on the energy transfer rates

for Ti = 104K.

ized to the electron density rise linearly with the charge Zi in FGR, but we find stronger

reductions due to coupled electron-ion modes for higher Zi. Particularly for smaller electron

temperatures, CM effects are more pronounced for more highly charged ions as ion acous-

tic modes might not exist for lower charges. Different ion masses are, on the other hand,

irrelevant as the give similar scaling in the CM and FGR expressions.
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V. SUMMARY AND CONCLUSIONS

We have investigated the electron-ion energy transfer rates in two-temperature plasmas

with special emphasis on coupled mode effects. For weakly coupled plasmas, we can rely

on the random phase approximation to describe the modes in coupled electron-ion systems.

It is shown that a coupled mode formula can be derived from the quantum version of the

Lennard-Balescu equation without further approximations. This expression is accurate for

weakly coupled plasmas of any degeneracy.

For certain conditions, the coupled mode expression yields considerably reduced electron-

ion energy transfer when compared to the LS and FGR approaches. A detailed analysis

showed that this reduction can be traced back to the presence of ion acoustic modes and

a related redistribution of weight in the dielectric response function. Precise conditions for

the occurrence of ion acoustic modes and the coupled mode reduction of the energy transfer

rates were derived. Interestingly, the CM reduction is preserved for very high electron

temperatures where the rates are roughly a factor of two lower than FGR or LS rates.

An agreement between CM and FGR expressions can only be reached if the temperature

difference is small or the ion temperature is sufficiently high to prohibit the occurrence of

ion acoustic modes.

We gratefully acknowledge financial support from the Engineering and Physical Sciences

Research Council and stimulating discussions with Prof. W.-D. Kraeft.

Appendix A: Derivation Coupled Mode Expression in RPA

The quantum Lennard-Balescu equation for electrons in homogeneous and isotropic plas-

mas reads [31]

∂

∂t
fe(p, t) =

1

h̄

∑

i

∫ dp′

(2πh̄)3

dp

(2πh̄)3

dp′

(2πh̄)3

∣

∣

∣

∣

∣

Vei(p − p)

εRPA (p − p, Ee(p) − Ee(p), t)

∣

∣

∣

∣

∣

2

×2πδ
(

Ee(p) + Ei(p
′) − Ee(p) − Ei(p

′)
)

(2πh̄)3 δ
(

p + p′ − p − p′
)

×
{

fe(p, t)fi(p
′, t) [1 − fe(p, t)] [1 − fi(p

′, t)] − fe(p, t)fi(p
′, t) [1 − fe(p, t)] [1 − fi(p

′, t)]
}

.

(A1)
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The sum runs over all species, but only ions contribute to the energy relaxation. Ea(p) =

p2/2ma denotes the kinetic energy of particles of species a and Vab(k) is the Coulomb poten-

tial. Dynamic screening is included by the retarded dielectric function which is used in RPA

εRPA(p, E, t) = 1−∑

a Vaa(p) χ0
aa(p, E, t) and relates the dielectric function to the density

response function of free particles. This density response is given by

χ0
aa(p, E, t) =

∫ dp′

(2πh̄)3

fa(p
′, t) − fa(p

′ + p, t)

E + Ea(p′) − Ea(p′ + p) + iǫ
, (A2)

which is, in turn, determined by the electron or the ion distribution functions.

The electron-ion energy transfer rates are obtained by multiplying the Lenard-Balescu

equation (A1) by the electron energy, Ee = p2/2me, and an integration over the free mo-

mentum (see balance equation (1). For the further proceedings, it is useful to consider the

transfer of momentum and energy during the collision, k = p−p and ω = Ee(p)−Ee(p),

respectively. With these new variables, one can now apply the relations between Fermi and

Bose functions na
B(ω)=[exp(h̄ω/kBTa)−1]−1, namely

fa(p) [1 − fa(p + k)] =

[fa(p + k) − fa(p)] na
B

(

Ea(p) − Ea(p + k)
)

, (A3)

The set of distributions in the third line of the collision integral of the Lenard-Balescu

equation (A1) can then be written as

{

f()
}

= [fe(p + k) − fe(p)] [fi(p
′) − fi(p

′ + k)]

×
[

ne
B(−ω) ni

B(ω) − ne
B(ω) ni

B(−ω)
]

. (A4)

With these transformations, we obtain for the electron-ion energy transfer rate

∂

∂t
ECM

e→i =−1

h̄

∑

i

∫ dp

(2πh̄)3

dk

(2πh̄)3

dω

2π
Ee(p + k)

∣

∣

∣

∣

∣

Vei(k)

εR(kω)

∣

∣

∣

∣

∣

2

×
[

fe(p + k) − fe(p)
]

2πδ
(

ω − Ee(p + k) + Ee(p)
)

×
[

ne
B(−ω) ni

B(ω) − ne
B(ω) ni

B(−ω)
]

×
∫ dp′

(2πh̄)3
[fi(p

′) − fi(p
′ + k)] 2πδ

(

ω − Ei(p
′ + k) + Ei(p

′)
)

.

(A5)
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The integral in the second line is the imaginary part of the r.h.s. of Eq. (A2): Im χ0
ii(kω). The

difference of Bose functions determines the direction of the energy transfer. After changing

variables to ω′=−ω, k′=−k, p′=p−k′ in the second term proportional to ne
B(ω) ni

B(−ω),

this term has the same form as the first one, except that the energy in front of the screened

potential is Ee(p) instead of Ee(p−k). Applying the energy conserving δ-function in the

collision integral yields Ee(p+k)−Ee(p)=ω.

Now the remaining electron distributions together with the energy conserving δ-function

give also the definition of an imaginary part of the free density response function: Im χ0
ee(kω).

The energy transfer rate is thus given by

∂

∂t
ECM

e→i =−4h̄
∑

i

∫ dk

(2πh̄)3

∞
∫

−∞

dω

2π
ω

∣

∣

∣

∣

∣

Vei(k)

εRPA(kω)

∣

∣

∣

∣

∣

2

× Im χ0
ee(kω) Im χ0

ii(kω) ne
B(−ω) ni

B(ω) .

(A6)

If we use the fact that [1/2−nB(ω)] and Im χ0
aa(ω) are odd functions with respect to ω, we

can rearrange the upper expression in the form

∂

∂t
ECM

e→i =−4h̄
∑

i

∫ dk

(2πh̄)3

∞
∫

0

dω

2π
ω

∣

∣

∣

∣

∣

Vei(k)

εRPA(kω)

∣

∣

∣

∣

∣

2

× Im χ0
ee(kω) Im χ0

ii(kω)
[

ne
B(ω) − ni

B(ω)
]

.

(A7)

This expression gives the electron-ion energy transfer rate in RPA including the effects of

coupled collective modes.

Appendix B: Equivalence to Coupled Mode Expression Derived by Dharma-

wardana & Perrot

The coupled mode expression derived by Dharma-wardana & Perrot, equation (50) in

Ref. [14], reads

Ėrlx = h̄

∞
∫

0

dω

2π

∫ dk

(2πh̄)3
ω V 2

ie(k) ∆Nei(ω)

× Ai(k, ω) Ae(k, ω)

|1 − V 2
ie(k) χee(k, ω) χii(k, ω)|2 , (B1)
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where we assumed all potentials to be of Coulomb type for simplicity. The difference of Bose

functions is here the same as in Eq. (A7): ∆Nei =ne
B(ω) − ni

B(ω). The functions Aa(k, ω)

are given by

Aa(k, ω) = −2Imχaa(k, ω) . (B2)

One should however notice that χaa(k, ω) are full density response functions of a coupled

system.

In RPA, these density response function can also be written in terms of the free particle

response and the dielectric function of the (fully coupled) medium [42]

χaa(k, ω) =
χ0

aa(k, ω)

1 − Vaa(k)χ0
aa(k, ω)

=
χ0

aa(k, ω)

εaa(k, ω)
. (B3)

The real and imaginary parts can then be expressed as

Reχaa(k, ω) =
Reεa(k, ω) − |εa(k, ω)|2

Vaa(k)|εa(k, ω)|2 , (B4)

Imχaa(k, ω) =− Imεa(k, ω)

Vaa(k)|εa(k, ω)|2 . (B5)

With these relations, the denominator in Eq. (B1) which constitutes the differences to the

FGR formula becomes

|1 − V 2
ie(k) χee(k, ω)χii(k, ω)|2 =

|ε(k, ω)|2
|εe(k, ω)|2|εi(k, ω)|2 .

(B6)

The dielectric function in the nominator is the one for the full system. The partial dielectric

functions εa in the denominator are cancelled by the one contained in the imaginary part of

the density response functions χaa (see Eq. (B5)). Hence, one obtains an expression identical

to Eq. (A7) by inserting these rearrangements into Eq. (B1).

Appendix C: Conditions for the Occurrence of Ion Acoustic Modes

For ion acoustic modes to exist, the real part of the total dielectric function must vanish.

We can consider the ionic contribution in non-degenerate limit. In RPA, the real part of χ0
ii

can be written as [31, 42]

Reχ0
ii(k, ω) =

ni

kBT

[

1 − ω2mi

p2kBT
1F1

(

1,
3

2
,− ω2mi

2p2kBT

)]

(C1)
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with the confluent hypergeometric function which can be approximated by a Padé formula

as follows [31]

1F1(−x) =
1 + x

3
+ x2

10
+ x3

42
+ x4

218
+ 7x5+x6

9360

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

4860

.

(C2)

For ion acoustic modes to occur, the minimum of the response functions (C1) must at least

compensate the electronic contribution plus unity. We thus search for an approximation of

Eq. (C2) that conserves the location of its minimum and find from the frequency derivative

ω0≈2.36 k (kBTi/mi)
1/2. Using ω0 in Eq. (C1) yields

Reεi(k, ω0) = 1 − 0.27
κ2

i

k2
, (C3)

where κi = (4πZ2
i e

2ni/kBTi)
1/2 is the inverse of the ion part of the classical Debye screening

length.

For the electronic part, we can use the static long wave length limit Reεe(k, 0)=1+(κe/k)2.

For small momenta, the unity can be neglected and we find the condition

κ2
e ≤ 0.27 κ2

i . (C4)

Eq. (C4) quantifies the known condition Ti ≪ Te [38] for ion acoustic waves. Temperature

relations may be obtained by inserting an appropriate expression for the electron screening

length, i.e., either the classical Debye length or the Thomas-Fermi screening length.
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