20 research outputs found

    Catalytic Tar Conversion in Two Different Hot Syngas Cleaning Systems

    Get PDF
    Tar in the product gas of biomass gasifiers reduces the efficiency of gasification processes and causes fouling of system components and pipework. Therefore, an efficient tar conversion in the product gas is a key step of effective and reliable syngas production. One of the most promising approaches is the catalytic decomposition of the tar species combined with hot syngas cleaning. The catalyst must be able to convert tar components in the synthesis gas at temperatures of around 700 C downstream of the gasifier without preheating. A Ni-based doped catalyst with high activity in tar conversion was developed and characterized in detail. An appropriate composition of transition metals was applied to minimize catalyst coking. Precious metals (Pt, Pd, Rh, or a combination of two of them) were added to the catalyst in small quantities. Depending on the hot gas cleaning system used, both transition metals and precious metals were co-impregnated on pellets or on a ceramic filter material. In the case of a pelletized-type catalyst, the hot gas cleaning system revealed a conversion above 80% for 70 and 110 h. The catalyst composed of Ni, Fe, and Cr oxides, promoted with Pt and impregnated on a ceramic fiber filter composed of Al2O3(44%)/SiO2(56%), was the most active catalyst for a compact cleaning system. This catalyst was catalytically active with a naphthalene conversion of around 93% over 95 h without catalyst deactivation

    Comprehensive Study of the Deformation Behavior during Diffusion Bonding of 1.4301 (AISI 304) as a Function of Material Width and Aspect Ratio

    Get PDF
    In this paper, the impact of material width as well as aspect ratio on deformation during diffusion bonding of layered samples were investigated. For this, six annular samples with a constant cross-sectional area but an increasing diameter and thus decreasing material width were designed. In a first set of experiments, specimens of a constant height of h = 20 mm were examined. Each sample consisted of 10 sheets, 2 mm in thickness each. Diffusion bonding was performed at T = 1075 °C, t = 4 h and p = 15 MPa. Subsequently, additional samples with a constant aspect ratio of about three but different material width were diffusion bonded. For this, additional layers were added. It was expected that the deformation should be nearly constant for a constant aspect ratio. However, comparing the deformation to a sample possessing an aspect ratio of about three from the first batch, a much higher deformation was obtained now. Bonding a third sample, a deformation in the same range as for the other two samples of the second batch was obtained. It was found that due to the evaporation of metals, the thermocouples were subjected to aging, which was proven indirectly by the evaluation of heating power. Since the diffusion coefficient of the metals follows an exponential law, deformation changes considerably with temperature. This emphasizes that exact temperature measurement is very important, especially for bonding microprocessor devices at constant contact pressure. The experiments showed that the deformation depends strongly on geometry. Bonding parameters cannot be generalized. For layered setups, the contribution that thickness tolerances from manufacturing and leveling of surface roughnesses of sheets add to the overall deformation cannot be reliably separated. After diffusion bonding, thickness tolerances increase with a lateral dimension. Obviously, the stiffness of the pressure dies is crucial

    Development of catalytic ceramic filter candles for tar conversion

    Get PDF
    A catalyst with a high activity in tar conversion, impregnated on the ceramic hot gas filter material was developed. The aim of the experiments was to estimate the light-offtemperature of the catalytic filter elements for naphthalene (tar model compounds) conversion and the long-term catalytic stability at a temperature of 700 °C. Configuration of the catalyst was optimized through improvements in coking re- sistance and long-term stability. The composition and morphology parameters of the filter material were considered. Both the impregnation methods and the composition of the impregnation solution were in- vestigated and validated. The catalyst composed of Ni, Fe, Cr oxides, promoted with Pt (AlSi-Cat43-Pt), and impregnated on the ceramic-fiber filter composed of Al 2 O 3 (44%)/SiO 2 (56%) was found to be the most active catalyst. The designated catalyst was catalytically active at temperatures of about 700 °C, with a naphthalene conversion of around 93% over 95 h without catalyst deactivation. We found that the steam and gas compositions had an influence on the catalytic activity of the filter elements. The same catalytic filter was catalytically active for 115 h at a low concentration of H 2 O (10 vol%) and H 2 (3 vol%) with a naphthalene conversion of 98% at 790 °C without significant deactivation

    Membranes for the Gas/Liquid Phase Separation at Elevated Temperatures: Characterization of the Liquid Entry Pressure

    Get PDF
    Hydrophobic membranes were characterized at elevated temperatures. Pressure was applied at the feed and permeate side to ensure liquid phase conditions. Within this scope, the applicability of different polymeric and ceramic membranes in terms of liquid entry pressure was studied using water. The Visual Method and the Pressure Step Method were applied for the experimental investigation. The results show the Pressure Step Method to be an early detection method. The tests at higher pressure and temperature conditions using the Pressure Step Method revealed the temperature as being the main factor affecting the liquid entry pressure. Novel LEP data up to 120 °C and 2.5 bar were obtained, which broadens the application range of hydrophobic membranes

    High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen

    Get PDF
    Potential air ingress scenarios during accidents in nuclear reactors or spent fuel pools have raised the question of the influence of air, especially of nitrogen, on the oxidation of zirconium alloys, which are used as fuel cladding tubes and other structure materials. In this context, the reaction of zirconium with nitrogen-containing atmospheres and the formation of zirconium nitride play an important role in understanding the oxidation mechanism. This article presents the results of analysis of the interaction of the oxygen-preloaded niobium-bearing alloy M5Âź with nitrogen over a wide range of temperatures (800e 1400C) and oxygen contents in the metal alloy (1e7 wt.%). A strongly increasing nitriding ratewith rising oxygen content in the metal was found. The highest reaction rates were measured for the saturated a-Zr(O), as it exists at the metaleoxide interface, at 1300C. The temperature maximum of the reaction rate was approximately 100 K higher than for Zircaloy-4, already investigated in a previous study [1]. The article presents results of thermogravimetric experiments as well as posttest examinations by optical microscopy, scanning electron microscopy (SEM), and microprobe elemental analyses. Furthermore, a comparison with results obtained with Zircaloy-4 will be made

    Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Get PDF
    Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium. View Full-Tex

    Chromium(0) and Molydenum(0) Complexes with a Pyridyl-Mesoionic Carbene Ligand: Structural, (Spectro)electrochemical, Photochemical, and Theoretical Investigations

    Get PDF
    This work reports on the synthesis and in-depth electrochemical and photochemical characterization of two chromium(0) and molydenum(0) metal complexes with bidentate pyridyl-mesoionic carbene (MIC) ligands of the 1,2,3-triazol-5-ylidene type and carbonyl coligands. Metal complexes with MIC ligands have turned out to have very promising electrocatalytic and photochemical properties, but examples of MIC-containing complexes with early-transition-metal centers remain extremely rare. The electrochemistry of these new MIC complexes was studied by cyclic voltammetry and especially spectroelectrochemistry in the IR region consistent with a mainly metal-centered oxidation, which is fully reversible in the case of the chromium(0) complex. At the same time, the two reduction steps are predominantly ligand-centered according to the observed near-IR absorbance, with the first reduction step being reversible for both systems. The results of the electron paramagnetic resonance studies on the oxidized and reduced species confirm the IR spectroelectrochemistry experiments. The photochemical reactivity of the complexes with a series of organic ligands was investigated by time-resolved (step-scan) Fourier transform infrared (FTIR) spectroscopy. Interestingly, the photoreactions in pyridine and acetonitrile are fully reversible with a slow dark reverse reaction back to the educt species over minutes and even hours, depending on the metal center and reagent. This reversible behavior is in contrast to the expected loss of one or several CO ligands known from related homoleptic as well as heteroleptic M(CO)4L2 α-diimine transition-metal complexes.Fil: Bens, Tobias. Universitat Stuttgart; AlemaniaFil: Boden, Pit. Freie UniversitÀt Berlin; AlemaniaFil: Di Martino-Fumo, Patrick. Freie UniversitÀt Berlin; AlemaniaFil: Beerhues, Julia. Universitat Stuttgart; AlemaniaFil: Albold, Uta. Freie UniversitÀt Berlin; AlemaniaFil: Sobottka, Sebastian. Universitat Stuttgart; AlemaniaFil: Neuman, Nicolås Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Gerhards, Markus. Freie UniversitÀt Berlin; AlemaniaFil: Sarkar, Biprajit. Universitat Stuttgart; Alemani

    First-time synthesis of a magnetoelectric core-shell composite via conventional solid-state reaction

    Get PDF
    In recent years, multiferroics and magnetoelectrics have demonstrated their potential for a variety of applications. However, no magnetoelectric material has been translated to a real application yet. Here, we report for the first time that a magnetoelectric core–shell ceramic, is synthesized via a conventional solid-state reaction, where core–shell grains form during a single sintering step. The core consists of ferrimagnetic CoFe2O4CoFe_{2}O_{4}, which is surrounded by a ferroelectric shell consisting of (BiFeO3)x–(Bi1/2K1/2TiO3)1−x(BiFeO_{3})_{x}–(Bi_{1/2}K_{1/2}TiO_{3})_{1−x}. We establish the core–shell nature of these grains by transmission-electron microscopy (TEM) and find an epitaxial crystallographic relation between core and shell, with a lattice mismatch of 6 ± 0.7%. The core–shell grains exhibit exceptional magnetoelectric coupling effects that we attribute to the epitaxial connection between the magnetic and ferroelectric phase, which also leads to magnetic exchange coupling as demonstrated by neutron diffraction. Apparently, ferrimagnetic CoFe2O4CoFe_{2}O_{4} cores undergo a non-centrosymmetric distortion of the crystal structure upon epitaxial strain from the shell, which leads to simultaneous ferrimagnetism and piezoelectricity. We conclude that in situ core–shell ceramics offer a number of advantages over other magnetoelectric composites, such as lower leakage current, higher density and absence of substrate clamping effects. At the same time, the material is predestined for application, since its preparation is cost-effective and only requires a single sintering step. This discovery adds a promising new perspective for the application of magnetoelectric materials

    Membranes for the Gas/Liquid Phase Separation at Elevated Temperatures: Characterization of the Liquid Entry Pressure

    No full text
    Hydrophobic membranes were characterized at elevated temperatures. Pressure was applied at the feed and permeate side to ensure liquid phase conditions. Within this scope, the applicability of different polymeric and ceramic membranes in terms of liquid entry pressure was studied using water. The Visual Method and the Pressure Step Method were applied for the experimental investigation. The results show the Pressure Step Method to be an early detection method. The tests at higher pressure and temperature conditions using the Pressure Step Method revealed the temperature as being the main factor affecting the liquid entry pressure. Novel LEP data up to 120 °C and 2.5 bar were obtained, which broadens the application range of hydrophobic membranes
    corecore