9 research outputs found

    PEDOT–CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties

    Get PDF
    Composites of carbon nanotubes and poly(3,4-ethylenedioxythiophene, PEDOT) and layers of PEDOT are deposited onto microelectrodes by electropolymerization of ethylenedioxythiophene in the presence of a suspension of carbon nanotubes and polystyrene sulfonate. Analysis by FIB and SEM demonstrates that CNT–PEDOT composites exhibit a porous morphology whereas PEDOT layers are more compact. Accordingly, capacitance and charge injection capacity of the composite material exceed those of pure PEDOT layers. In vitro cell culture experiments reveal excellent biocompatibility and adhesion of both PEDOT and PEDOT–CNT electrodes. Signals recorded from heart muscle cells demonstrate the high S/N ratio achievable with these electrodes. Long-term pulsing experiments confirm stability of charge injection capacity. In conclusion, a robust fabrication procedure for composite PEDOT–CNT electrodes is demonstrated and results show that these electrodes are well suited for stimulation and recording in cardiac and neurophysiological research

    A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine

    No full text
    Recording neural signals from delicate autonomic nerves is a challenging task that requires the development of a low-invasive neural interface with highly selective, micrometer-sized electrodes. This paper reports on the development of a three-dimensional (3D) protruding thin-film microelectrode array (MEA), which is intended to be used for recording low-amplitude neural signals from pelvic nervous structures by penetrating the nerves transversely to reduce the distance to the axons. Cylindrical gold pillars (Ø 20 or 50 µm, ~60 µm height) were fabricated on a micromachined polyimide substrate in an electroplating process. Their sidewalls were insulated with parylene C, and their tips were optionally modified by wet etching and/or the application of a titanium nitride (TiN) coating. The microelectrodes modified by these combined techniques exhibited low impedances (~7 kΩ at 1 kHz for Ø 50 µm microelectrode with the exposed surface area of ~5000 µm²) and low intrinsic noise levels. Their functionalities were evaluated in an ex vivo pilot study with mouse retinae, in which spontaneous neuronal spikes were recorded with amplitudes of up to 66 µV. This novel process strategy for fabricating flexible, 3D neural interfaces with low-impedance microelectrodes has the potential to selectively record neural signals from not only delicate structures such as retinal cells but also autonomic nerves with improved signal quality to study neural circuits and develop stimulation strategies in bioelectronic medicine, e.g., for the control of vital digestive functions. [Image: see text
    corecore