164 research outputs found

    Interaction between subunit C (Vma5p) of the yeast vacuolar ATPase and the stalk of the C-depleted V-1 ATPase from Manduca sexta midgut

    Get PDF
    AbstractProjection maps of a V1–Vma5p hybrid complex, composed of subunit C (Vma5p) of Saccharomyces cerevisiae V-ATPase and the C-depleted V1 from Manduca sexta, were determined from single particle electron microscopy. V1–Vma5p consists of a headpiece and an elongated wedgelike stalk with a 2.1×3.0 nm protuberance and a 9.5×7.5 globular domain, interpreted to include Vma5p. The interaction face of Vma5p in V1 was explored by chemical modification experiments

    An improved purification of ECF1 and ECF1F0 by using a cytochrome bo-deficient strain of Escherichia coli facilitates crystallization of these complexes

    Get PDF
    AbstractA novel strategy, which employs a cytochrome bo-lacking strain (GO104) and a modified isolation procedure provides an effective approach for obtaining much purer preparations of ECF1F0 than described previously, as well as for isolating homogeneous and protein-chemically pure ECF1. ECF1 obtained in this way could be crystallized by vapor-diffusion using polyethylene glycol (PEG) as a precipitant in a form suitable for X-ray diffraction analysis. The crystals belong to the orthorhombic space group P212121, with lattice parameters a=110, b=134, and c=269 Ã…, and diffract to a resolution of at least 6.4 Ã…

    Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO

    Get PDF
    AbstractWe have previously shown that the V-ATPase a2-subunit isoform interacts specifically, and in an intra-endosomal acidification-dependent manner, with the Arf-GEF ARNO. In the present study, we examined the molecular mechanism of this interaction using synthetic peptides and purified recombinant proteins in protein-association assays. In these experiments, we revealed the involvement of multiple sites on the N-terminus of the V-ATPase a2-subunit (a2N) in the association with ARNO. While six a2N-derived peptides interact with wild-type ARNO, only two of them (named a2N-01 and a2N-03) bind to its catalytic Sec7-domain. However, of these, only the a2N-01 peptide (MGSLFRSESMCLAQLFL) showed specificity towards the Sec7-domain compared to other domains of the ARNO protein. Surface plasmon resonance kinetic analysis revealed a very strong binding affinity between this a2N-01 peptide and the Sec7-domain of ARNO, with dissociation constant KD=3.44×10−7M, similar to the KD=3.13×10−7M binding affinity between wild-type a2N and the full-length ARNO protein. In further pull-down experiments, we also revealed the involvement of multiple sites on ARNO itself in the association with a2N. However, while its catalytic Sec7-domain has the strongest interaction, the PH-, and PB-domains show much weaker binding to a2N. Interestingly, an interaction of the a2N to a peptide corresponding to ARNO's PB-domain was abolished by phosphorylation of ARNO residue Ser392. The 3D-structures of the non-phosphorylated and phosphorylated peptides were resolved by NMR spectroscopy, and we have identified rearrangements resulting from Ser392 phosphorylation. Homology modeling suggests that these alterations may modulate the access of the a2N to its interaction pocket on ARNO that is formed by the Sec7 and PB-domains. Overall, our data indicate that the interaction between the a2-subunit of V-ATPase and ARNO is a complex process involving various binding sites on both proteins. Importantly, the binding affinity between the a2-subunit and ARNO is in the same range as those previously reported for the intramolecular association of subunits within V-ATPase complex itself, indicating an important cell biological role for the interaction between the V-ATPase and small GTPase regulatory proteins

    Structural Determination of Functional Units of the Nucleotide Binding Domain (NBD94) of the Reticulocyte Binding Protein Py235 of Plasmodium yoelii

    Get PDF
    Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH.In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94(444-547), NBD94(566-663) and NBD94(674-793), respectively. Using fluorescence correlation spectroscopy NBD94(444-547) has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94(444-547) in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 A in length. The high quality of the constructs, forming the hinge-region, NBD94(566-663) and NBD94(674-793) enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94(566-663) consists of two helices with 97.8 A and 48.6 A in length, linked by a loop. By comparison, the low resolution structure of NBD94(674-793) in solution represents a chair-like shape with three architectural segments.These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the potential use of this region as a novel drug target

    Low Resolution Solution Structure of HAMLET and the Importance of Its Alpha-Domains in Tumoricidal Activity.

    Get PDF
    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells

    Association of the eukaryotic V1VO ATPase subunits a with d and d with A

    Get PDF
    AbstractOwing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200nM have been determined for the a–d and d–A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.Structured summaryMINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107

    Structural model of a2-subunit N-terminus and its binding interface for Arf-GEF CTH2: Implication for regulation of V-ATPase, CTH2 function and rational drug design

    Get PDF
    We have previously identified the interaction between mammalian V-ATPase a2-subunit isoform and cytohesin-2 (CTH2) and studied molecular details of binding between these proteins. In particular, we found that six peptides derived from the N-terminal cytosolic domain of a2 subunit (a2N1–402) are involved in interaction with CTH2 (Merkulova, Bakulina, Thaker, Grüber, & Marshansky, 2010). However, the actual 3D binding interface was not determined in that study due to the lack of high-resolution structural information about a-subunits of V-ATPase. Here, using a combination of homology modeling and NMR analysis, we generated the structural model of complete a2N1–402 and uncovered the CTH2-binding interface. First, using the crystal-structure of the bacterial M. rubber Icyt-subunit of A-ATPase as a template (Srinivasan, Vyas, Baker, & Quiocho, 2011), we built a homology model of mammalian a2N1–352 fragment. Next, we combined it with the determined NMR structures of peptides a2N368–395 and a2N386–402 of the C-terminal section of a2N1–402. The complete molecular model of a2N1–402 revealed that six CTH2 interacting peptides are clustered in the distal and proximal lobe sub-domains of a2N1–402. Our data indicate that the proximal lobe sub-domain is the major interacting site with the Sec7 domain of first CTH2 protein, while the distal lobe sub-domain of a2N1–402 interacts with the PH-domain of second CTH2. Indeed, using Sec7/Arf-GEF activity assay we experimentally confirmed our model. The interface formed by peptides a2N1–17 and a2N35–49 is involved in specific interaction with Sec7 domain and regulation of GEF activity. These data are critical for understanding of the cross-talk between V-ATPase and CTH2 as well as for the rational drug design to regulate their function

    Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer

    Get PDF
    Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc; 1; :aa; 3; . While the cytochrome bc; 1; :aa; 3; is the primary terminal oxidase in Mycobacterium tuberculosis, the presence of an alternate bd-type terminal oxidase limits the bactericidal and sterilizing potency of Q203 against this bacterium. M. ulcerans strains found in Buruli ulcer patients from Africa and Australia lost all alternate terminal electron acceptors and rely exclusively on the cytochrome bc; 1; :aa; 3; to respire. As a result, Q203 is bactericidal at low dose against M. ulcerans replicating in vitro and in mice, making the drug a promising candidate for Buruli ulcer treatment

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
    • …
    corecore