210 research outputs found

    Ultraperipheral Collisions at RHIC and LHC

    Get PDF
    A brief introduction to the physics of ultraperipheral collisions at collider energies is given. Photon-hadron (proton/ nucleus) and photon-photon interactions can be studied in a hitherto unexplored energy regime.Comment: 3 pages, 2 figures, Proceedings of PHOTON 2007, Paris 9-13 July 2007, to be published in Nucl. Phys. B (Proceedings Supplements

    Single-Photon Switch based on Rydberg Blockade

    Full text link
    All-optical switching is a technique in which a gate light pulse changes the transmission of a target light pulse without the detour via electronic signal processing. We take this to the quantum regime, where the incoming gate light pulse contains only one photon on average. The gate pulse is stored as a Rydberg excitation in an ultracold atomic gas using electromagnetically induced transparency. Rydberg blockade suppresses the transmission of the subsequent target pulse. Finally, the stored gate photon can be retrieved. A retrieved photon heralds successful storage. The corresponding postselected subensemble shows an extinction of 0.05. The single-photon switch offers many interesting perspectives ranging from quantum communication to quantum information processing

    Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions

    Full text link
    We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution which is determined by the transverse momentum of the emitted photon, the production process on the target and the interference effect is done. We study the total unrestricted cross section and those, where an additional electromagnetic excitation of one or both of the ions takes place in addition to the vector meson production, in the latter case small impact parameters are emphasized.Comment: 12 pages, REVTeX manuscrip

    Production of Low Mass Electron Pairs Due to the Photon-Photon Mechanism in Central Collisions

    Get PDF
    We calculate the probability for dilepton production in central relativistic heavy ion collisions due to the gamma-gamma mechanism. This is a potential background to more interesting mechanisms. We find that this mechanism is negligible in the CERES experiments. Generally, the contribution due to this mechanism is small in the central region, while it can be large for small invariant masses and forward or backward rapidities. A simple formula based on the equivalent photon approximation and applications to a possible scenario at RHIC are also given.Comment: 10 pages REVTeX, 5 Figures, for related work see http://quasar.physik.unibas.ch/~hencken

    Single-Photon Transistor Using a F\"orster Resonance

    Full text link
    An all-optical transistor is a device in which a gate light pulse switches the transmission of a target light pulse with a gain above unity. The gain quantifies the change of the transmitted target photon number per incoming gate photon. We study the quantum limit of one incoming gate photon and observe a gain of 20. The gate pulse is stored as a Rydberg excitation in an ultracold gas. The transmission of the subsequent target pulse is suppressed by Rydberg blockade which is enhanced by a F\"orster resonance. The detected target photons reveal in a single shot with a fidelity above 0.86 whether a Rydberg excitation was created during the gate pulse. The gain offers the possibility to distribute the transistor output to the inputs of many transistors, thus making complex computational tasks possible

    Production of QED pairs at small impact parameter in relativistic heavy ion collisions

    Get PDF
    The STAR collaboration at RHIC is measuring the production of electron-positron pairs at small impact parameters, larger than but already close to the range, where the ions interact strongly with each other. We calculate the total cross section, as well as, differential distributions of the pair production process with the electromagnetic excitation of both ions in a semiclassical approach and within a lowest order QED calculation. We compare the distribution of electron and positron with the one coming from the cross section calculation without restriction on impact parameter. Finally we give an outlook of possible results at the LHC.Comment: 15 pages, 8 figure

    Electromagnetic Dissociation as a Tool for Nuclear Structure and Astrophysics

    Get PDF
    Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrix elements and astrophysical S-factors for radiative capture processes can be extracted from experiments. We describe the basic theory, new results concerning higher order effects in the dissociation of neutron halo nuclei, and briefly review the experimental results obtained up to now. Some new applications of Coulomb dissociation for nuclear astrophysics and nuclear structure physics are discussed.Comment: 10 pages, 1 figure, to appear in Proceedings of the International School on Nuclear Physics; 22nd Course: ``Radioactive Beams for Nuclear and Astro Physics'', Erice/Sicily/Italy, September 16 - 24, 200
    corecore