188 research outputs found

    The influence of iron status and genetic polymorphisms in the HFE gene on the risk for postoperative complications after bariatric surgery: a prospective cohort study in 1,064 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric bypass surgery is a highly effective therapy for long-term weight loss in severely obese patients, but carries significant perioperative risks including infection, wound dehiscence, and leaks from staple breakdown. Iron status can affect immune function and wound healing, thus may influence peri-operative complications. Common mutations in the HFE gene, the gene responsible for the iron overload disorder hereditary hemochromatosis, may impact iron status.</p> <p>Methods</p> <p>We analyzed 1064 extremely obese Caucasian individuals who underwent open and laparoscopic Roux-n-Y gastric bypass surgery at the Geisinger Clinic. Serum iron, ferritin, transferrin, and iron binding capacity were measured pre-operatively. All patients had intra-operative liver biopsies and were genotyped for the C282Y and H63D mutations in the HFE gene. Associations between surgical complications and serum iron measures, HFE gene status, and liver iron histology were determined.</p> <p>Results</p> <p>We found that increased serum iron and transferrin saturation were present in patients with any post-operative complication, and that increased serum ferritin was also increased in patients with major complications. Increased serum transferrin saturation was also associated with wound complications in open RYGB, and transferrin saturation and ferritin with prolonged lengths of stay. The presence of 2 or more HFE mutations was associated with overall complications as well as wound complications in open RYGB. No differences were found in complication rates between those with stainable liver iron and those without.</p> <p>Conclusion</p> <p>Serum iron status and HFE genotype may be associated with complications following RYGB surgery in the extremely obese.</p

    Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Get PDF
    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes

    Phenomenology of non-standard Z couplings in exclusive semileptonic b -> s transitions

    Get PDF
    The rare decays BK()+B\to K^{(*)}\ell^+\ell^-, BK()ννˉB\to K^{(*)}\nu\bar\nu and Bsμ+μB_s\to\mu^+\mu^- are analyzed in a generic scenario where New Physics effects enter predominantly via ZZ penguin contributions. We show that this possibility is well motivated on theoretical grounds, as the sˉbZ\bar sbZ vertex is particularly susceptible to non-standard dynamics. In addition, such a framework is also interesting phenomenologically since the sˉbZ\bar sbZ coupling is rather poorly constrained by present data. The characteristic features of this scenario for the relevant decay rates and distributions are investigated. We emphasize that both sign and magnitude of the forward-backward asymmetry of the decay leptons in BˉKˉ+\bar B\to \bar K^*\ell^+\ell^-, AFB(Bˉ){\cal A}^{(\bar B)}_{FB}, carry sensitive information on New Physics. The observable AFB(Bˉ)+AFB(B){\cal A}^{(\bar B)}_{FB}+{\cal A}^{(B)}_{FB} is proposed as a useful probe of non-standard CP violation in sˉbZ\bar sbZ couplings.Comment: Minor modifications; version to appear in Phys. Rev.

    Phenome-wide association study to explore relationships between immune system related genetic loci and complex traits and diseases

    Get PDF
    CITATION: Verma, A., et al. 2016. Phenome-wide association study to explore relationships between immune system related genetic loci and complex traits and diseases. PLoS ONE, 11(8):e0160573, doi:10.1371/journal. pone.0160573.The original publication is available at http://journals.plos.org/plosoneThis study highlights the utility of using PheWAS in conjunction with EHRs to discover new genotypic-phenotypic associations for immune-system related genetic loci.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160573Publisher's versio

    Identification of Novel Clinical Factors Associated with Hepatic Fat Accumulation in Extreme Obesity

    Get PDF
    Objectives. The accumulation of lipids stored as excess triglycerides in the liver (steatosis) is highly prevalent in obesity and has been associated with several clinical characteristics, but most studies have been based on relatively small sample sizes using a limited set of variables. We sought to identify clinical factors associated with liver fat accumulation in a large cohort of patients with extreme obesity. Methods. We analyzed 2929 patients undergoing intraoperative liver biopsy during a primary bariatric surgery. Univariate and multivariate regression modeling was used to identify associations with over 200 clinical variables with the presence of any fat in the liver and with moderate to severe versus mild fat accumulation. Results. A total of 19 data elements were associated with the presence of liver fat and 11 with severity of liver fat including ALT and AST, plasma lipid, glucose, and iron metabolism variables, several medications and laboratory measures, and sleep apnea. The accuracy of a multiple logistic regression model for presence of liver fat was 81% and for severity of liver fat accumulation was 77%. Conclusions. A limited set of clinical factors can be used to model hepatic fat accumulation with moderate accuracy and may provide potential mechanistic insights in the setting of extreme obesity

    Identification of Novel Clinical Factors Associated with Hepatic Fat Accumulation in Extreme Obesity

    Get PDF
    Objectives. The accumulation of lipids stored as excess triglycerides in the liver (steatosis) is highly prevalent in obesity and has been associated with several clinical characteristics, but most studies have been based on relatively small sample sizes using a limited set of variables. We sought to identify clinical factors associated with liver fat accumulation in a large cohort of patients with extreme obesity. Methods. We analyzed 2929 patients undergoing intraoperative liver biopsy during a primary bariatric surgery. Univariate and multivariate regression modeling was used to identify associations with over 200 clinical variables with the presence of any fat in the liver and with moderate to severe versus mild fat accumulation. Results. A total of 19 data elements were associated with the presence of liver fat and 11 with severity of liver fat including ALT and AST, plasma lipid, glucose, and iron metabolism variables, several medications and laboratory measures, and sleep apnea. The accuracy of a multiple logistic regression model for presence of liver fat was 81% and for severity of liver fat accumulation was 77%. Conclusions. A limited set of clinical factors can be used to model hepatic fat accumulation with moderate accuracy and may provide potential mechanistic insights in the setting of extreme obesity

    Transdermal Influenza Immunization with Vaccine-Coated Microneedle Arrays

    Get PDF
    Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a novel method for transdermal delivery using metal microneedle arrays (MN) coated with inactivated influenza virus to determine whether this route is a simpler and safer approach than the conventional immunization, capable to induce robust immune responses and confer protection against lethal virus challenge.Inactivated A/Aichi/2/68 (H3N2) influenza virus was coated on metal microneedle arrays and applied to mice as a vaccine in the caudal dorsal skin area. Substantial antibody titers with hemagglutination inhibition activity were detected in sera collected two and four weeks after a single vaccine dose. Challenge studies in mice with 5 x LD(50) of mouse adapted Aichi virus demonstrated complete protection. Microneedle vaccination induced a broad spectrum of immune responses including CD4+ and CD8+ responses in the spleen and draining lymph node, a high frequency of antigen-secreting cells in the lung and induction of virus-specific memory B-cells. In addition, the use of MN showed a dose-sparing effect and a strong Th2 bias when compared to an intramuscular (IM) reference immunization.The present results show that delivery of inactivated influenza virus through the skin using metal microneedle arrays induced strong humoral and cellular immune responses capable of conferring protection against virus challenge as efficiently as intramuscular immunization, which is the standard vaccination route. In view of the convenience of delivery and the potential for self-administration, vaccine-coated metal microneedles may provide a novel and highly effective immunization method

    Regulatory Polymorphisms in Human DBH Affect Peripheral Gene Expression and Sympathetic Activity

    Get PDF
    Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine in the CNS and peripherally. DBH variants are associated with large changes in circulating DBH and implicated in multiple disorders; yet causal relationships and tissue-specific effects remain unresolved

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877
    corecore