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Abstract

The rare decays B → K(∗)`+`−, B → K(∗)νν̄ and Bs → µ+µ− are analyzed in a generic sce-
nario where New Physics effects enter predominantly via Z penguin contributions. We show
that this possibility is well motivated on theoretical grounds, as the s̄bZ vertex is particu-
larly susceptible to non-standard dynamics. In addition, such a framework is also interesting
phenomenologically since the s̄bZ coupling is rather poorly constrained by present data. The
characteristic features of this scenario for the relevant decay rates and distributions are inves-
tigated. We emphasize that both sign and magnitude of the forward-backward asymmetry of

the decay leptons in B̄ → K̄∗`+`−, A(B̄)
FB, carry sensitive information on New Physics. The

observable A(B̄)
FB + A(B)

FB is proposed as a useful probe of non-standard CP violation in s̄bZ
couplings.
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1 Introduction

Despite the fact that the Cabibbo-Kobayashi-Maskawa (CKM) mechanism provides a consis-
tent description of presently available data on quark-flavour mixing, the flavour structure of
the Standard Model (SM) is not very satisfactory from the theoretical point of view, especially
if compared to the elegant and economical gauge sector. On the contrary, it is natural to
consider it as a phenomenological low-energy description of a more fundamental theory, able,
for instance, to explain the observed hierarchy of the CKM matrix.

A special role in searching for experimental clues about non-standard flavour dynamics
is provided by flavour-changing neutral-current (FCNC) processes. Within the SM these are
generated only at the quantum level and are additionally suppressed by the smallness of the off-
diagonal entries of the CKM matrix. On one side this makes their observation very challenging
but on the other side it ensures a large sensitivity to possible non-standard effects, even if these
occur at very high energy scales.

In general we can distinguish two types of FCNC processes: ∆F = 2 and ∆F = 1 tran-
sitions. The former has been successfully tested in K0 − K̄0 and Bd − B̄d systems, both via
CP -conserving (∆MK and ∆MBd

) and CP -violating observables (εK and sin 2β). On the
other hand, much less is known about the latter. Few ∆S = 1 FCNC transitions have been
observed in K decays, but most of them are affected by sizable long-distance uncertainties.
The only exception is B(K+ → π+νν̄) [1], which is however affected by a large experimental
error. The situation is slightly better in the B sector, where the inclusive b → sγ rate provides
a theoretically clean ∆B = 1 FCNC observable [2]. Nonetheless, it is clear that a substantial
improvement is necessary in order to perform more stringent tests of the SM.

In the present paper we focus on a specific class of non-standard ∆B = 1 FCNC transitions:
those mediated by the Z-boson exchange. As we shall discuss, these are particularly interesting
for two main reasons: i) there are no stringent experimental bounds on these transitions yet;
ii) it is quite natural to conceive extensions of the SM where the Z-mediated FCNC amplitudes
are substantially modified, even taking into account the present constraints on ∆B = 2 and
b → sγ processes.

The simplest way to search for non-standard ∆B = 1 FCNC effects mediated by the Z-
boson exchange is to look for parton-level transitions of the type b → s(d) + `+`−(νν̄). None
of such processes has been observed yet, but the situation will certainly improve in a short
term, with the advent of new high statistics experiments at e+e− and hadron B-factories. In
principle the theoretically cleanest observables are provided by inclusive decays, which should
play an important role in the longer run. On the other hand, the exclusive variants will be more
readily accessible in experiment. Despite the sizable theoretical uncertainties in the exclusive
hadronic form factors, these processes could therefore give interesting first clues on deviations
from what is expected in the Standard Model. This is particularly true if those happen to be
large or if they show striking patterns. Since in the present study we are mainly interested
in such a possibility, we shall restrict our phenomenological discussion to the exclusive three-
body processes B → (K, K∗) + (µ+µ−, νν̄). Having branching ratios in the 10−6− 10−5 range,
and a relatively clear signature, these decays represent one of the primary goals of the new
experiments. As we will show, forward-backward and CP asymmetries of these modes provide
a powerful tool not only to search for New Physics, but also to clearly identify the interesting
scenario where the dominant source of non-standard dynamics can be encoded in effective

1



FCNC couplings of the Z boson.
The paper is organized as follows. In Section 2 the general features characterizing the

FCNC couplings of the Z boson beyond the SM are discussed; we further introduce a general
parameterization of these effects, both for b → s and b → d transitions, in terms of the complex
couplings ZL,R

qb (q = s, d) and evaluate their model-independent constraints. In Section 3 we
present various estimates for these couplings in specific extensions of the Standard Model.
Notations and general formulae for the phenomenological analysis are introduced in Section
4. In Section 5 and Section 6 we discuss how the non-standard FCNC couplings of the Z
would manifest themselves and how they could possibly be isolated in B → (K, K∗) + νν̄ and
B → (K, K∗) + µ+µ− decays, respectively. Implications for Bs → µ+µ− are briefly described
in Section 7. A summary of the results can be found in Section 8.

2 General features of FCNC couplings of the Z boson

In a generic extension of the Standard Model where new particles appear only above some high
scale MX > MZ , we can always integrate out the new degrees of freedom and generate a series of
local FCNC operators already at the electroweak scale. Those relevant for b → s(d)+`+`−(νν̄)
transitions can be divided into three wide classes:

• Four-fermion operators. The local four-fermion operators obtained by integrating out
the new particles necessarily have dimension greater or equal to six. These could be
generated either at the tree level (e.g. by leptoquark exchange) or at one loop (e.g. by
SUSY box diagrams) but in both cases, due to dimensional arguments, their Wilson
coefficients are expected to be suppressed at least by two inverse powers of the New
Physics scale MX .

• Magnetic operators. The integration of the heavy degrees of freedom can also lead to
operators with dimension lower that six, creating an effective FCNC coupling between
quarks and SM gauge fields. In the case of the photon field, the unbroken electromagnetic
gauge invariance implies that the lowest dimensional coupling is provided by the so-called
“magnetic” operators ∼ b̄σµνsFµν . Having dimension five, their Wilson coefficients are
expected to be suppressed at least by one inverse power of MX .

• FCNC Z couplings. Due to the spontaneous breaking of SU(2)L×U(1)Y we are allowed,
in the case of the Z boson, to build an effective FCNC coupling of dimension four:
b̄L(R)γ

µsL(R)Zµ. The coefficient of this operator must be proportional to some symmetry-
breaking term but, for dimensional reasons, it does not need to contain any explicit 1/MX

suppression.

Given the above discussion, the effective FCNC couplings of the Z boson appear particularly
interesting and worth to be studied independently of the other effects: in a generic model with
additional sources of SU(2)L × U(1)Y breaking, these are the only ∆F = 1 FCNC couplings
that do not necessarily decouple by dimensional arguments in the limit MX/MZ � 1. It
should be noticed that the requirement of naturalness in the size of the SU(2)L × U(1)Y

breaking terms suggests that also the adimensional couplings of the non-standard Z-mediated
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FCNC amplitudes decouple in the limit MX/MZ →∞. However, the above naive dimensional
argument remains a strong indication of an independent behaviour of these couplings with
respect to the other FCNC amplitudes [3, 4]. As we will illustrate in Section 3, this independent
behaviour is indeed realized within various extensions of the SM.

Interestingly, FCNC couplings of the Z represent also the least constrained class among
those listed above: magnetic operators are bounded by b → sγ and, within most models,
dimension-six operators are strongly correlated to those entering B − B̄ mixing. The scenario
where the dominant non-standard contribution to b → s(d)+ `+`−(νν̄) transitions is mediated
by a Zb̄s(d) coupling is therefore particularly appealing also from a purely phenomenological
point of view.

2.1 Effective Lagrangian and model-independent constraints

The effective FCNC couplings of the Z, relevant for the b → s transition, can be described by
means of the following effective Lagrangian

LZ
FC =

GF√
2

e

π2
M2

Z

cos ΘW

sin ΘW
Zµ

(
ZL

sb b̄LγµsL + ZR
sb b̄RγµsR

)
+ h.c. , (1)

where ZL,R
sb are complex couplings and the overall normalization has been chosen in analogy

to the s → d case discussed in [3, 5]. For later convenience we also define ZL,R
bs = (ZL,R

sb )∗. The
SM contribution to ZL,R

sb , evaluated in the ’t Hooft-Feynman gauge, can be written as2

ZR
sb|SM = 0 , ZL

sb|SM = V ∗
tbVtsC0(xt) , (2)

where Vij denote the CKM matrix elements, xt = m2
t /m

2
W and the function C0(x) can be found

in [6].
At present the cleanest model-independent constraints on |ZL,R

sb | can be obtained from the
experimental upper bounds on B(B → Xs`

+`−). Normalizing the inclusive rate for B →
Xs`

+`− to the well known Γ(B → Xce
+νe) and assuming that all contributions to the former

but those generated by LZ
FC are negligible, we can write

Γ(B → Xs`
+`−)

Γ(B → Xce+νe)
=

α2

π2 sin4 ΘW

∣∣∣ZL
sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2
|Vcb|2 f(mc/mb)

[(
a`

L

)2
+
(
a`

R

)2
]

, (3)

where f(z) = (1 − 8z2 + 8z6 − z8 − 24z4 ln z) is the phase space factor due to the non-
vanishing charm mass and, for consistency, we have neglected the small QCD correction factor
in Γ(B → Xce

+νe). Here a`
L(R) denotes the left(right)-handed coupling of the lepton to the Z,

namely a`
L = sin2 ΘW − 1/2 and a`

R = sin2 ΘW for ` = e or µ, whereas aν
L = 1/2 and aν

R = 0
for the neutrino case. Using B(B → Xce

+νe) = 0.105, sin2 ΘW = 0.23, α−1 = 129, |Vcb| = 0.04
and f(mc/mb) = 0.54, we find

B(B → Xs`
+`−) = 1.76× 10−3

(∣∣∣ZL
sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2) , (4)

B(B → Xsνν̄) = 1.05× 10−2
(∣∣∣ZL

sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2) , (5)

2 As it is well known, the SM contribution to FCNC Z penguins is not gauge invariant. We recall, however,
that the leading contribution to both b → s(d)`+`− and b → s(d)νν̄ amplitudes in the limit xt → ∞ is gauge
independent and is indeed generated by the Z penguin (C0(xt) → xt/8 for xt →∞).
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where in the neutrino mode we have summed over the three lepton families. Experimental
upper bounds exist both for B(B → Xs`

+`−) and B(B → Xsνν̄), leading to

(∣∣∣ZL
sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2)1/2
<∼ 0.15 , from B(B → Xs`

+`−) < 4.2× 10−5 [7] , (6)

(∣∣∣ZL
sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2)1/2
<∼ 0.27 , from B(B → Xsνν̄) < 7.7× 10−4 [8] . (7)

The strongest bound is presently imposed by B(B → Xs`
+`−), since the larger sensitivity of

B(B → Xsνν̄) is compensated by its more difficult experimental determination.3 The limits
in (6–7) have been derived assuming that all the non-Z-mediated contributions are negligible,
which is a reasonable approximation in view of the present experimental sensitivities. On the
other hand, if the experimental bounds were much closer to the SM expectations, we stress
that the neutrino mode would definitely be preferable from the theoretical point of view due
to the absence of electromagnetic and long-distance contributions [10, 11].

Employing the Wolfenstein expansion of the CKM matrix in powers of λ = 0.22 [12]
and recalling that C0(xt) ∼ O(1), the SM contribution to ZL

sb turns out to be of O(λ2) ∼
0.04 (see Eq. (2)), therefore much below the bound (6). As we will show later, more severe
constraints on |ZL,R

sb | can be obtained by the experimental bound on the exclusive branching
ratio B(B → K∗µ+µ−). These are however subject to stronger theoretical uncertainties, related
to the assumptions on the form factors, and require a detailed discussion that we postpone to
Section 6.2.

Additional model-independent information on these couplings could in principle be obtained
by the direct constraints on B(Z → bs̄) and by Bs − B̄s mixing, but in both cases these are
not very significant. Concerning the first case, we find

B(Z → bs̄) =
G2

FM5
Zα cos2 θW

12π4ΓZ sin2 θW

(∣∣∣ZL
sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2) = 7.6× 10−6
(∣∣∣ZL

sb

∣∣∣2 +
∣∣∣ZR

sb

∣∣∣2) , (8)

which is quite far from the present experimental sensitivity at LEP of O(10−3) [13], even for
|ZL,R

sb | ∼ O(1). Concerning Bs − B̄s mixing, assuming for simplicity ZR
sb = 0 and employing

the notations of [6], we find

M(Bs − B̄s)
Z =

αG2
FM2

W

3π3 sin2 θW

BBsf
2
Bs

MBsηB

(
ZL

sb

)2
(9)

=
4αM(Bs − B̄s)

SM

π sin2 θW S0(xt)

(
ZL

sb

V ∗
tbVts

)2

. (10)

At the moment we cannot extract any interesting information from (10) due to the lack of
a significant upper bound on |M(Bs − B̄s)|. If in the future we were able to exclude that
|M(Bs − B̄s)

Z| is larger than |M(Bs − B̄s)
SM |, then we would obtain∣∣∣ZL

sb

∣∣∣ < 7.6 |V ∗
tbVts| ∼ 0.3 . (11)

Performing the exchange s → d in Eq. (1-2) we can define, analogously to ZL,R
sb , the

couplings ZL,R
db relevant for the b → d transition. The upper bound (6) would be valid also for

3 A result similar to the one in (6) has recently been presented also in Ref. [9].
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these couplings if we could assume B(B → Xdµ
+µ−) ≤ B(B → Xsµ

+µ−), but in the b → d
case more stringent constraints can be derived from Bd − B̄d mixing. The SM contribution to
M(Bd− B̄d) can account for the observed value of ∆MBd

, nevertheless, due to the theoretical
uncertainty on BBd

f 2
Bd

, non-standard contributions of comparable size cannot be excluded at
present. Imposing for instance |M(Bd − B̄d)

Z | < |M(Bd − B̄d)
SM | and replacing s → d in

Eq. (10) we obtain ∣∣∣ZL
db

∣∣∣ < 7.6 |V ∗
tbVtd| ∼ 0.06 , (12)

which is still substantially larger than the SM contribution: ZL
db|SM = O(λ3) ∼ 0.01.

3 Model-dependent expectations for ZL,R
qb

In the previous section we have seen that sizable non-standard contributions to the FCNC
couplings of the Z are allowed, at least from a purely phenomenological point of view, both for
b → s and b → d transitions. In the following we shall analyze the expectations for the ZL,R

qb

couplings in a few specific theoretical frameworks. Moreover, we will show various consistent
models where it is a good approximation to encode all the non-standard FCNC effects in the
couplings of LZ

FC .

3.1 Fourth generation

A simple extension of the SM, particularly useful as a toy model for more complicated scenarios,
is obtained by adding a sequential fourth generation of quarks and leptons. This is allowed
by Tevatron and LEP data provided all the new fermions, neutrinos included, are sufficiently
heavy (mt′ >∼ 200 GeV) and the splitting among the weak isospin doublets is very small
(|mt′ −mb′ |/mt′ <∼ 0.1) (see e.g. [14] and references therein).

This model exhibits a typical non-decoupling effect in the Zqb coupling. Indeed, denoting
by Vt′q the mixing angles of the new up-type quark with the light generations, the dominant

non-standard contribution to the ZL,R
qb coupling is given by

ZR
qb|4th = 0 , ZL

qb|4th = V ∗
t′bVt′qC0(xt′) ' xt′

8
V ∗

t′bVt′q , (13)

where xt′ = m2
t′/m

2
W . In the limit

V ∗
t′bVt′q → 0 , m2

t′ →∞ , V ∗
t′bVt′qm

2
t′ → const., (14)

this is the only non-standard effect surviving in b → s(d) + `+`−(νν̄) transitions. Choosing
sufficiently small mixing angles one can therefore easily evade the experimental constraint on
V ∗

t′bVt′q and, by raising the value of mt′ , still obtain sizable effects in ZL
qb.

In the case of b → s transitions the dominant constraint on the combination V ∗
t′bVt′s is

imposed by b → sγ. Indeed the bounds from K−K̄ mixing and K decays can always be evaded
assuming Vt′d = 0, whereas the constraint from Bs−B̄s mixing is very loose. Barring accidental
cancellations in the b → sγ amplitude, namely assuming that the dominant contribution to
the latter is the SM one, leads to |V ∗

t′bVt′s| <∼ λ3, almost independently of the value of m′
t. Even
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employing this stringent constraint,4 however, one could still have |ZL
sb|4th | ∼ |ZL

sb|SM| provided
mt′ >∼ 400 GeV.

3.2 Generic SUSY models

Due to the large number of new particles carrying flavor quantum numbers, sizable modifica-
tions of FCNC amplitudes are naturally expected within low-energy supersymmetric extensions
of the SM with generic flavour couplings [16, 17]. Assuming R parity conservation and minimal
particle content, FCNC amplitudes involving external quark fields turn out to be generated
only at the quantum level, like in the SM. However, in addition to the standard penguin and box
diagrams, also their corresponding superpartners, generated by gaugino/higgsino-squark loops,
play an important role. These contributions to inclusive and exclusive b → s`+`− transitions
have been widely discussed in the literature (see e.g. [18, 19, 20, 21] for a recent discussion and
a complete list of references), employing different assumptions for the soft-breaking terms. In
the following we will emphasize the role of the Z penguins in the context of the mass-insertion
approximation [17].

Similarly to the Zs̄d case, extensively discussed in [3, 22], the potentially dominant non-SM
effect in the effective Zb̄q vertex is generated by chargino-up-squark diagrams [18, 20]. Indeed
sizable SU(2)L breaking effects can be expected only in the up sector due to the large Yukawa
coupling of the third generation. Moreover, since terms involving external right-handed quarks
are suppressed by the corresponding down-type Yukawa couplings, also within this framework
ZR

qb turns out to be negligible.
Employing the notations of [3], the full chargino-up-squark contribution to ZL

sb can be
written as

ZL
sb|SUSY =

1

8
As

jlĀ
b
ikFjilk , (15)

where

As
jl = ĤlsL

V̂ †
1j − gtVtsĤltR V̂ †

2j , (16)

Āb
ik = Ĥ†

bLkV̂i1 − gtV
∗
tbĤ

†
tRkV̂i2 , (17)

Fjilk = V̂j1V̂
†
1i δlk k(xik, xjk)− 2Ûi1Û

†
1j δlk

√
xikxjkj(xik, xjk)

−δij ĤkqL
Ĥ†

qLl k(xik, xlk) . (18)

Here gt = mt/(
√

2mW sin β) is the top Yukawa coupling; V is the CKM matrix; V̂ and Û are
the unitary matrices that diagonalize the chargino mass matrix ( Û∗MχV̂ † = diag(Mχ1 , Mχ2) )

and Ĥ is the one that diagonalizes the up-squark mass matrix (written in the basis where the
di

L− ũj
L−χn coupling is flavor diagonal and the di

L− ũj
R−χn one is ruled by the CKM matrix).

The explicit expressions of k(x, y) and j(x, y) can be found in [3, 22] and, as usual, xij denote
ratios of squared masses.

The product of As
jl and Āb

ik in (15) generates four independent terms, proportional to
g2

t V
∗
tbVts, gtVts, gtV

∗
tb and 1, respectively. As a first approximation we can neglect those pro-

portional to Vts, which are clearly suppressed with respect to the SM contribution. A further

4 Substantially larger values of |V ∗
t′bVt′s| are possible assuming that the contribution of the fourth generation

changes the sign of the b→ sγ amplitude. See Ref. [15] for a recent discussion of this point.
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simplification can be obtained employing the so-called mass-insertion approximation, i.e. ex-
panding the up-squark mass matrix around its diagonal. In this way it can been shown that
the potentially dominant contribution is the one generated to the first order by the t̃R − ũs

L

mixing [18], namely

ZL
sb|RL

SUSY = −1

8
gtV

∗
tb

(M2
U)tRsL

M2
ũL

V̂ †
1j

[
V̂j1V̂

†
1ik(xiuL

, xjuL
, xtRuL

)

−δijk(xiuL
, xtRuL

, 1)− 2Ûi1Û
†
1j

√
xiuL

xjuL
j(xiuL

, xjuL
, xtRuL

)
]
V̂i2 . (19)

Notice that, contrary to the ZL
ds case, here the CKM factor V ∗

tb does not imply any additional
suppression and therefore the double left-right mixing discussed in [3] represents only a sub-
leading correction. In ZL

sb|RL
SUSY the necessary SU(2)L breaking (∆IW = 1) is equally shared

by the left-right mixing of the squarks and by the chargino-higgsino mixing (shown by the
mismatch of V̂ indices), carrying both ∆IW = 1/2.

For a numerical evaluation, varying the SUSY parameters entering (19) in the allowed
ranges, we find ∣∣∣ZL

sb|RL
SUSY

∣∣∣ <∼ 0.1

∣∣∣∣∣(M
2
U )tRsL

M2
ũL

∣∣∣∣∣ = 0.1
∣∣∣(δU

RL)32

∣∣∣ , (20)

in agreement with the results of [18]. The factor (δU
RL)32, which represents the analog of Vts in

the SM case, is not very constrained at present [18, 22] and can be of O(1), with an arbitrary
CP -violating phase [20].

Eq. (15-20) can simply be extended to the b → d case with the replacement s → d.
Similarly to (δU

RL)32, also (δU
RL)31 is essentially unconstrained at present.

As it can be checked by the detailed analysis of [18], in the interesting limit where the
left-right mixing of the squarks is the only non-standard source of flavour mixing, the Z-
penguin terms discussed above are largely dominant with respect to supersymmetric box and
γ-penguin contributions to b → s`+`−. On the other hand, we note that in processes of
the type b → sqq̄ these true penguin terms could easily compete in size with the so-called
trojan-penguin amplitudes discussed in [9].

3.3 Strong electroweak symmetry breaking

The natural alternative to low-energy supersymmetry is the scenario where the Higgs field
is not elementary and the electroweak symmetry breaking is generated by some new strong
dynamics appearing at a scale Λ ∼ 1 TeV. Without a detailed knowledge of the new dynamics,
and of the new degrees of freedom associated with it, a convenient way to describe this scenario
is obtained by considering the most general effective Lagrangian written in terms of fermions
and gauge fields of the SM, as well as the Nambu-Goldstone bosons associated with the spon-
taneous breaking of SU(2)L×U(1)Y → U(1)em [23]. In this way, imposing the custodial SU(2)
symmetry on the Nambu-Goldstone boson sector, the lowest order terms in the Lagrangian
are completely determined, corresponding to the SM case in the limit of infinite Higgs mass.
On the other hand, the effect of the new dynamics is encoded in the Wilson coefficients of
higher-order operators, suppressed by appropriate inverse powers of Λ.

A conservative assumption, usually employed to reduce the number of free parameters, is
that the higher-order operators do not involve directly the fermionic sector. In other words, it
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is assumed that the new dynamics involves only the interactions of electroweak gauge fields and
Nambu-Goldstone bosons [23]. Under this assumption most of the coefficients of the allowed
dimension-four operators (appearing at the next-to-leading order) are strongly constrained by
electroweak precision data. However, as pointed out in [24, 25, 26], some of them naturally
escape these bounds and could show up in sizable modifications of FCNC amplitudes. Inter-
estingly, this happens despite the intrinsic flavor-conserving nature of these terms. It occurs
at the loop level, either via modifications of the trilinear gauge-boson couplings [26] or via
corrections to the Nambu-Goldstone boson propagators [24, 25].

Also within this context the FCNC couplings of the Z play a special role. As an example,
we consider here the effect of the anomalous WWZ coupling. Following the work of Ref. [26],
this can be written as

ZL
qb|WWZ = α3g

2V ∗
tbVtq

3xt

8
log

(
M2

W

Λ2

)
+ . . .

∼ O(1)× V ∗
tbVtq

g2m2
t

Λ2
log

(
M2

W

Λ2

)
. (21)

where g is the usual SU(2)L coupling and the dots denote additional finite terms (i.e. not
logarithmically enhanced). The adimensional coupling α3 is one of the unknown coefficients
appearing in the next-to-leading order Lagrangian of Ref. [23]. This is essentially unconstrained
by other processes (unless further assumptions are employed) and is expect to be ofO(M2

W /Λ2)
by dimensional arguments. The relative shift of ZL

qb with respect to the SM case can thus be
up to 50%. Interestingly, the same relative shift would be present in ZL

ds, leading to interesting
correlations between rare B and K decays [26]. It is worthwhile to point out that this is the only
non-standard FCNC effect due to anomalous gauge-boson couplings which is logarithmically
divergent, which can be taken as an indication of a particular sensitivity of ZL

ds to the new
dynamics [26]. We finally note that also within this context ZR

qb remains unaffected: this is
clearly due to the chiral nature of the SM gauge group and indeed it remains valid also if we
consider the effects due to modified Nambu-Goldstone boson propagators [25].

If the conservative assumption that higher-order operators do not involve directly the
fermionic sector is relaxed, the freedom in generating new FCNC effects is clearly enhanced.
The first natural step is to include only higher-order operators which involve the quarks of the
third generation, as for instance done in [27]. However, the most general scenario is obtained
by considering all generations. In this latter option one could generate FCNC transitions al-
ready at the tree-level and, by restricting the attention to the lowest-dimensional operators,
one would recover the general case described by Eq. (1). The predictivity of this scenario is
obviously very limited, but still, only on dimensional arguments, one can conclude that the
FCNC couplings of the Z could play a very special role. The natural suppression of FCNC
would then suggest ZL,R

qb ∼ O(m2
t/Λ2)×V ∗

tbVtq, leaving open the possibility of O(1) corrections
with respect to the SM case.

3.4 Tree-level Z-mediated FCNC couplings

FCNC couplings of the Z can be generated already at the tree level in various exotic scenarios.
Two popular examples discussed in the literature are the models with addition of non-sequential
generations of quarks (see e.g. [28] and references therein) and those with an extra U(1)

8



symmetry (see e.g. [29] and references therein). In the former case, adding a different number
of up- and down-type quarks, the pseudo CKM matrix needed to diagonalize the charged
currents is no more unitary and this leads to tree-level FCNC couplings. On the other hand,
in the case of an extra U(1) symmetry the FCNC couplings of the Z are induced by Z − Z ′

mixing, provided the SM quarks have family non-universal charges under the new U(1) group.
Interestingly these two possibilities (i.e. the extra U(1) and the non-sequential quarks) are
often linked in many consistent extensions of the SM [30]. Here we will not discuss any of such
model in detail. We simply note, however, that for our purposes these could be well described
by the effective Lagrangian in (1), provided the contribution of the Z ′ exchange is negligible
or the couplings of the Z ′ to light charged leptons and neutrinos are proportional to the SM
ones.

4 Generalities of exclusive b → s`+`−(νν̄) decays

4.1 Effective Hamiltonian

The starting point for the analysis of b → s`+`−(νν̄) transitions is the determination of the
low-energy effective Hamiltonian, obtained by integrating out the heavy degrees of freedom of
the theory, renormalized at a scale µ = O(mb). In our framework this can be written as

Heff = −GF√
2
V ∗

tsVtb

(
10∑
i=1

[CiQi + C ′
iQ

′
i] + Cν

LQν
L + Cν

RQν
R

)
+ h.c. , (22)

where Qi denotes the Standard Model basis of operators relevant to b → s`+`− [6] and O′
i

their helicity flipped counter parts. In particular, we recall that Qi ∼ (s̄b)(c̄c), for i = 1 . . . 6,
Q8 ∼ mbs̄(σ · G)b, whereas the only operators with a tree-level non-vanishing matrix element
in b → s`+`− are given by

Q7 =
e

4π2
s̄LσµνmbbRF µν , Q′

7 =
e

4π2
s̄RσµνmbbLF µν ,

Q9 =
e2

4π2
s̄LγµbL

¯̀γµ` , Q′
9 =

e2

4π2
s̄RγµbR

¯̀γµ` ,

Q10 =
e2

4π2
s̄LγµbL

¯̀γµγ5` , Q′
10 =

e2

4π2
s̄RγµbR

¯̀γµγ5` . (23)

The last two operators in Heff are defined as

Qν
L,R =

e2

4π2
s̄L,RγµbL,Rν̄γµ(1− γ5)ν (24)

and constitute the complete basis relevant to b → sνν̄.
Due to the absence of flavour-changing right-handed currents, within the Standard Model

one has
C ′

1−10|SM = Cν
R|SM = 0 . (25)

whereas the remaining non-vanishing coefficients are known at the next-to-leading order [6, 31,
32]. The coefficients of Q10 and Qν

L are scale independent and are completely dominated by
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short-distance dynamics associated with top quark exchange. Their values are therefore well
approximated by the leading order results, given by (m̄t(mt) = 166 GeV)5

Cν
L|SM =

4B0(xt)− C0(xt)

sin2 ΘW

= −6.6 , C10|SM =
B0(xt)− C0(xt)

sin2 ΘW

= −4.2 , (26)

where the contribution proportional to C0(xt) is the one induced by ZL
sb|SM in Eq. (2) once

the Z field has been integrated out (the full expression for B0(x) can be found in [6]). The
difference among the two numerical values in (26) can be taken as an indication of the size
of the non-Z-induced contributions to these coefficients within the SM. On the other hand, in
the generic non-standard scenario described by LZ

FC we can write

Cν
L − Cν

L|SM = C10 − C10|SM = − ZL
bs − ZL

bs|SM

V ∗
tsVtb sin2 ΘW

, Cν
R = C ′

10 = − ZR
bs

V ∗
tsVtb sin2 ΘW

. (27)

In principle the coefficients C9 and C ′
9 are also sensitive to ZL

bs and ZR
bs. In this case,

however, the contribution of LZ
FC is suppressed by the smallness of the vector coupling of the

Z to charged leptons (|ae
V /ae

A| = |4 sin2 ΘW − 1| ' 0.08) and as a first approximation can be
neglected. Given the above considerations, we will assume in the following that all the Wilson
coefficients but those in (27) coincide with their SM expressions.

4.2 Kinematics and form factors

In the following sections we shall discuss integrated observables and distributions in the in-
variant mass of the dilepton system, q2, for the three-body decays B → H`¯̀, with H = K,
K∗ and ` = µ, ν. The kinematical range of q2 is given by 4m2

` ' 0 ≤ q2 ≤ (mB − mH)2.
In the neutrino case q2 is not directly measurable but is related to the kaon energy in the
B meson rest frame, varying in the interval mH ≤ EH ≤ (m2

B + m2
H)/(2mB) by the relation

q2 = m2
B+m2

H−2mBEH . For convenience we define also the dimensionless variables s = q2/m2
B

and rH = m2
H/m2

B, and the function

λH(s) = 1 + r2
H + s2 − 2s− 2rH − 2rHs . (28)

In the case H = K the hadronic matrix elements needed for our analysis can be written as

〈K̄(p
K
)|s̄γµb|B̄(p)〉 = f+(q2)(p + p

K
)µ + f−(q2)qµ , (29)

qν〈K̄(p
K
)|s̄σµνb|B̄(p)〉 = i

fT (q2)

mB + mK

[
q2(p + p

K
)µ − (m2

B −m2
K)qµ

]
, (30)

where qµ = pµ − pµ
K
. Up to small isospin breaking effects, which we shall neglect, the same

set of form factors describes both charged (B− → K−) and neutral (B̄0 → K̄0) transitions.

5Here and in the following we employ the running (MS) mass for the top quark, m̄t(mt). For b → s`+`−

the distinction between the pole mass and the running mass enters, strictly speaking, only beyond the next-to-
leading order we are working in [33]. However, the short-distance MS-mass is the more appropriate definition
for FCNC processes involving virtual top quarks, and the higher order corrections are generally better behaved.
This is true in particular for the transitions b → sνν̄ and Bs → µ+µ−, where the use of the running mass in
the known next-to-leading order expressions is entirely well defined and leads indeed to a small size of the NLO
QCD corrections.
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Similarly, in the case H = K∗ we can write (ε0123 = +1)

〈K̄∗(p
K
, ε)|s̄γµγ5b|B̄(p)〉 = 2mK∗A0(q

2)
ε∗ · q
q2

qµ + (mB + mK∗)A1(q
2)

[
ε∗µ −

ε∗ · q
q2

qµ

]

−A2(q
2)

ε∗ · q
mB + mK∗

[
(p + p

K
)µ − m2

B −m2
K∗

q2
qµ

]
, (31)

〈K̄∗(p
K
, ε)|s̄γµb|B̄(p)〉 = i

2V (q2)

mB + mK∗
εµνρσε∗νpρpσ

K
, (32)

qν〈K̄∗(p
K
, ε)|s̄σµν(1 + γ5)b|B̄(p)〉 = − 2T1(q

2)εµνρσε∗νpρpσ
K

−iT2(q
2)
[
ε∗µ(m

2
B −m2

K∗)− (ε∗ · q)(p + p
K
)µ

]
− iT3(q

2)(ε∗ · q)
[
qµ − q2(p + p

K
)µ

m2
B −m2

K∗

]
(33)

Here we have used the phase conventions of [34]. In particular, all form factors are real and
positive. We remark that the large-energy limit discussed in [34] is especially useful to fix the
relative sign of the various form factors in a model independent way.
The form factors fT , T1, T2 and T3 depend on the renormalization scale, which here and in the
following is understood to be µ = mb. There is no need to further specify the renormalization
scheme for the tensor operator s̄σµν(1+γ5)b, since the issue of a non-trivial scheme dependence
enters only beyond the next-to-leading logarithmic approximation in b → s`+`−

For the numerical evaluations of fi(q
2), Ai(q

2), Ti(q
2) and V (q2) we refer to the recent

analysis of Ref. [19], performed in the framework of light-cone sum rules.

5 B → (K, K∗)νν̄

From a theoretical point of view the neutrino channels are certainly much cleaner compared to
the charged lepton ones due to the absence of long-distance effects of electromagnetic origin.
Moreover the smaller number of operators involved (only two) simplifies their description.
Finally the branching fractions are enhanced by the summation over the three neutrino flavours.
All these virtues, however, are partially compensated by the difficult experimental signature.

5.1 B → Kνν̄

The dilepton spectrum of this mode is particularly simple and is sensitive only to the combi-
nation |Cν

L + Cν
R| [35]:

dΓ(B → Kνν̄)

ds
=

G2
F α2m5

B

256π5
|V ∗

tsVtb|2 λ
3/2
K (s)f 2

+(s)|Cν
L + Cν

R|2 (34)

The differential branching ratio computed within the SM is plotted in Fig. 1, showing the
uncertainty due to the form factors. Note that in the neutral modes the strangeness eigenstates
of the kaons do not coincide with the mass eigenstates, which are experimentally detected.
Therefore, neglecting isospin-breaking and ∆S = 2 CP -violating effects, we can write

Γ(B → Kνν̄) ≡ Γ(B+ → K+νν̄) = 2Γ(B0 → KL,Sνν̄) . (35)
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Figure 1: Dilepton invariant mass distribution for B(B → Kνν̄) within the SM. The three
lines correspond to the central, minimal and maximal values of f+(s) from [19].

The absence of absorptive final-state interactions in this process also leads to Γ(B → Kνν̄) =
Γ(B̄ → K̄νν̄), preventing the observation of any direct-CP -violating effect.

Integrating Eq. (34) over the full range of s leads to

B(B → Kνν̄) = (3.8+1.2
−0.6)× 10−6

∣∣∣∣∣C
ν
L + Cν

R

CL|νSM

∣∣∣∣∣
2

≈ 4× 10−6

∣∣∣∣∣1− (ZL
bs − ZL

bs|SM) + ZR
bs

0.06

∣∣∣∣∣
2

, (36)

where the error in the first equality is due to the uncertainty in the form factors and the second
relation has been obtained by means of Eq. (27). Given the constraint (6), without further
assumptions we find B(B → Kνν̄) <∼ 5 × 10−5. This bound sets the level below which an
experimental constraint on this mode starts to provide significant information. On the other
hand, in most of the scenarios discussed in Section 3, where ZR

bs = 0 and |ZL
bs| <∼ 0.1, we find

B(B → Kνν̄) <∼ 2× 10−5 . (37)

If the experimental sensitivity on B(B → Kνν̄) reached the 10−6 level, then the uncertainty
due the form factors would prevent a precise extraction of |Cν

L + Cν
R| from (36). This problem

can be substantially reduced by relating the differential distribution of B → Kνν̄ to the one
of B → πeνe [36, 37]:

dΓ(B → Kνν̄)/ds

dΓ(B0 → π−e+νe)/ds
=

3α2

4π2

∣∣∣∣V
∗
tsVtb

Vub

∣∣∣∣
2
(

λK(s)

λπ(s)

)3/2 ∣∣∣∣∣f
K
+ (s)

fπ
+(s)

∣∣∣∣∣
2

|Cν
L + Cν

R|2 . (38)
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Figure 2: Dilepton invariant mass distribution for B(B → K∗νν̄) within the SM. The three
lines correspond to the central, minimal and maximal values, as obtained by varying the form
factors within the ranges quoted in [19].

Indeed fK
+ (s) and fπ

+(s) coincide up to SU(3) breaking effects, which are expected to be
small, especially far from the endpoint region. An additional uncertainty in (38) is induced by
the CKM ratio |V ∗

tsVtb|2/|Vub|2 which, however, can independently be determined from other
processes.

5.2 B → K∗νν̄

The dilepton invariant mass spectrum of B → K∗νν̄ decays is sensitive to both combinations
|Cν

L − Cν
R| and |Cν

L + Cν
R| [35, 38]:

dΓ(B → K∗νν̄)

ds
=

G2
F α2m5

B

1024π5
|V ∗

tsVtb|2 λ
1/2
K∗ (s)

{
8sλK∗(s)V 2(s)

(1 +
√

rK∗)2
|Cν

L + Cν
R|2

+
1

rK∗

[
(1 +

√
rK∗)2 (λK∗(s) + 12rK∗s)A2

1(s) +
λ2

K∗(s)A2
2(s)

(1 +
√

rK∗)2

− 2λK∗(s)(1− rK∗ − s)A1(s)A2(s)

]
|Cν

L − Cν
R|2

}
. (39)

The branching fraction obtained within the SM is shown in Fig. 2.
Integrating Eq. (39) over the full range of s leads to

B(B → K∗νν̄) = (2.4+1.0
−0.5)× 10−6

∣∣∣∣∣C
ν
L + Cν

R

CL|νSM

∣∣∣∣∣
2

+ (1.1+0.3
−0.2)× 10−5

∣∣∣∣∣C
ν
L − Cν

R

CL|νSM

∣∣∣∣∣
2

, (40)

B(B → K∗νν̄)
∣∣∣
SM

= (1.3+0.4
−0.3)× 10−5 . (41)
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Similarly to the case of B(B → Kνν̄), the bound (6) leaves open the possibility of enhancements
of B(B → K∗νν̄) up to one order of magnitude with respect to the SM case. Whereas if ZR

bs = 0
and |ZL

bs| <∼ 0.1, we find the constraint

B(B → K∗νν̄) <∼ 10−4 , (42)

which is almost one order of magnitude below the present experimental sensitivity [39].
A reduction of the error induced by the poor knowledge of the form factors can be obtained

by normalizing the dilepton distributions of B → K∗νν̄ to the one of B → ρeνe [40, 37]. This
is particularly effective in the limit s → 0, where the contribution proportional to |Cν

L + Cν
R|

(vector current) drops out:

dΓ(B → K∗νν̄)/ds

dΓ(B0 → ρ−e+νe)/ds

∣∣∣∣∣
s=0

=
3α2

4π2

∣∣∣∣V
∗
tsVtb

Vub

∣∣∣∣
2
(

1− rK∗

1− rρ

)3
rρ

rK∗
|Cν

L − Cν
R|2

×
∣∣∣∣∣A

K∗
1 (0)(1 +

√
rK∗)−AK∗

2 (0)(1− rK∗)/(1 +
√

rK∗)

Aρ
1(0)(1 +

√
rρ)−Aρ

2(0)(1− rρ)/(1 +
√

rρ)

∣∣∣∣∣
2

(43)

Similarly to the ratio fK
+ (s)/fπ

+(s) in (38), also the last term in (43) is equal to one up to
SU(3)-breaking corrections.

6 B → (K, K∗)`+`−

The possibility to detect the leptons not only provides a clear experimental signature for
B → (K, K∗)`+`− decays, it also allows to consider interesting observables in addition to
the decay distribution, like the forward-backward asymmetry. Moreover, the non-vanishing
absorptive contributions lead to potentially large direct-CP -violating effects.

The problem of these modes is the uncertainty in the non-perturbative contributions gen-
erated by the operators Q1−6 in Heff . Indeed these induce transitions of the type b → s(cc̄) →
s`+`− that can be handled in perturbation theory only within specific regions of the dilepton
spectrum.

In the following we shall restrict our attention to the transitions with a µ+µ− pair in the
final state, which have the clearest experimental signature, however the whole discussion is
equally applicable to the e+e− case.

6.1 Non-perturbative cc̄ corrections and Ceff
9

In the kinematic region of large dilepton invariant mass, above the Ψ′ peak, the light quark
fields (u, d, s, c) appearing in Heff may be integrated out explicitly since they enter loop
diagrams with a hard external scale (q2 ∼ m2

b) [40, 41]. The endpoint effective Hamiltonian
thus derived, valid at the next-to-leading order in QCD, can be obtained from the one in (22)
setting to zero the coefficients of Q1−6 and replacing C9 with

CEP
9 (s) = C9 + h

(
mc

mb
,
m2

B

m2
b

s

)
(3C1 + C2) +O (C3−6) , (44)
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where the function h(x, y) and the numerically small O (C3−6) terms can be found in [42] (we
recall that to the next-to-leading order accuracy, only the leading order values of C1−6 are
need in CEP

9 ). Note that the coefficient function in (44) differs from the effective coupling
of Q9 usually introduced to describe inclusive decays [6], since it does not include the QCD
correction to the matrix element of the s̄LγµbL current. Indeed the latter has to be included
in the corresponding hadronic matrix elements, assuming they are computed in full QCD and
appropriately normalized at µ = O(mb).

In the region of large q2 one still expects non-perturbative corrections induced by inter-
mediate cc̄ states. Although in principle power suppressed (∼ ΛQCD/mb), locally these are
likely to produce sizable modifications to the dilepton spectrum. The relative importance of
these non-perturbative effects, however, can be diminished by integrating over sufficiently large
ranges of q2.

Far from the endpoint region it is not possible, in principle, to safely integrate out the
light quark fields in Heff and one should estimate separately the matrix elements of Q1−6.
In general this is a very complicated task that has so far been treated only with the help of
some non-rigorous simplifying assumptions. For instance, assuming that the matrix elements
of Q1−6 can be factorized as

〈Hµ+µ−|Qi|B̄〉 ∝ 〈H|s̄LγµbL|B̄〉 × 〈µ+µ−|c̄γµc|0〉 , (45)

one can employ the Krüger-Sehgal (KS) approach [43] and estimate 〈µ+µ−|c̄γµc|0〉 by means
of σ(e+e− → cc̄) data. This approach has the advantage of avoiding double-counting and to
provide a rigorous non-perturbative estimate of 〈µ+µ−|c̄γµc|0〉. Other recipes to evaluate the
contributions of 〈Q1−6〉 can be found e.g. in [44] and [45]. In all cases, in analogy with (44),
these contributions are encoded via an effective coupling for the operator Q9 of the type

Ceff
9 (s) = C9 + Y (s) . (46)

Due to the real intermediate cc̄ states, Y (s) develops an imaginary part that plays a crucial
role in determining the size of direct-CP -violating observables. A comparison of the different
approaches to compute ImCeff

9 (s) is shown in Fig. 3.
In the following we shall compare results obtained by identifying Ceff

9 (s) with CEP
9 (s) or,

alternatively, by employing the KS approach.

6.2 Branching ratios and dilepton spectra

Neglecting the lepton mass, the q2 distributions of B̄ → K̄µ+µ− and B̄ → K̄∗µ+µ− decays,
computed with the effective Hamiltonian of Section 4.1, can be written as

dΓ(B̄ → K̄µ+µ−)

ds
=

G2
Fα2m5

B

1536π5
|VtbVts|2λ3/2

K (s)

{
f 2

+(s)
(
|Ceff

9 (s)|2 + |C10 + C ′
10|2

)

+
4m2

bf
2
T (s)

(mB + mK)2
|C7|2 +

4mbfT (s)f+(s)

mB + mK

Re
(
Ceff

9 (s)C∗
7

)}
, (47)

dΓ(B̄ → K̄∗µ+µ−)

ds
=

dΓ(B̄ → K̄∗µ+µ−)

ds

∣∣∣∣∣
SM
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Figure 3: The imaginary part of Ceff
9 as a function of s: ImCeff

9 (s) = ImCEP
9 (s) as in (44)

(dotted); KS prescription [43] (solid); Ref. [45] (dot-dashed). For comparison we have also
included the approach of Ref. [44] (dashed), where Breit-Wigner resonances are naively added
to the partonic calculation. (This procedure is disfavoured since it has a manifest problem of
double-counting.)

+
G2

Fα2m5
B

1024π5
|VtbVts|2λ1/2

K∗ (s)

{
4sλK∗(s)V 2(s)

3(1 +
√

rK∗)2

(
|C10 + C ′

10|2 − |C10|SM|2
)

+

[
λK∗(s) + 12rK∗s

6rK∗
(1 +

√
rK∗)2A2

1(s)−
λK∗(s)

3rK∗
(1− rK∗ − s)A1(s)A2(s)

+
λ2

K∗(s)A2
2(s)

6rK∗(1 +
√

rK∗)2

] (
|C10 − C ′

10|2 − |C10|SM|2
)}

. (48)

The SM expression of dΓ(B̄ → K̄∗µ+µ−)/ds is given by

dΓ(B̄ → K̄∗µ+µ−)

ds
=

G2
Fα2m5

B

1024π5
|V ∗

tsVtb|2 λ
1/2
K∗ (s) (49)

×
{

R9

(
|Ceff

9 (s)|2 + |C10|2
)

+ R7
m2

b

m2
B

|C7|2 + R97
mb

mB
ReCeff

9 (s)C∗
7

}
,

where

R9 =
4sλK∗(s)V 2(s)

3(1 +
√

rK∗)2
+

(1 +
√

rK∗)2

6rK∗
(λK∗(s) + 12rK∗s)A2

1(s) +
λ2

K∗(s)

6rK∗

A2
2(s)

(1 +
√

rK∗)2

−λK∗(s)(1− rK∗ − s)

3rK∗
A1(s)A2(s) (50)
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R7 =
16λK∗(s)T 2

1 (s)

3s
+

2(1− rK∗)2

3rK∗s2
(λK∗(s) + 12rK∗s)T 2

2 (s) +
2λ2

K∗(s)

3rK∗(1− rK∗)2
T 2

4 (s)

−4λK∗(s)(1− rK∗ − s)

3rK∗s
T2(s)T4(s) (51)

R97 =
16λK∗(s)V (s)T1(s)

3(1 +
√

rK∗)
+

2(1− rK∗)(1 +
√

rK∗)

3rK∗s
(λK∗(s) + 12rK∗s)A1(s)T2(s)

+
2λ2

K∗(s)(1−√rK∗)

3rK∗(1− rK∗)2
A2(s)T4(s)

−2λK∗(s)(1− rK∗ − s)

3rK∗

(
1−√rK∗

s
A2(s)T2(s) +

1

1−√rK∗
A1(s)T4(s)

)
(52)

and we have defined

T4(s) ≡ T3(s) +
1− rK∗

s
T2(s) (53)

Here we have again neglected the lepton mass, which is an excellent approximation for
` = e, µ if s � 4m2

`/m
2
B. The full m` dependence can be found for instance in [19].

As it can be noticed, the coefficients C10 and C ′
10, which could have a potentially large

CP -violating phase induced by ZL,R
bs , do not interfere with Ceff

9 (s), which has a non-vanishing
CP -conserving phase. As a consequence, similarly to the SM case, also within our generic
non-standard scenario we do not expect to observe any sizable (i.e. above the 10−2 level) CP
asymmetry in the dilepton invariant mass distribution of both decay modes. In the remaining
part of this subsection we will therefore not distinguish between B and B̄ states.

The integration over the full range of s with Ceff
9 (s) ≡ CEP

9 (s) (non-resonant branching
ratio) and the SM Wilson coefficients leads to B(B → K∗µ+µ−)n.r.|SM = 1.9+0.5

−0.3 × 10−6 and
B(B → Kµ+µ−)n.r.|SM = 5.7+1.6

−1.0 × 10−7 [19], where the error is mainly determined by the
uncertainty on the form factors. Interestingly B(B → K∗µ+µ−)n.r.|SM is quite close to the
experimental limit

B(B0 → K∗0µ+µ−)n.r. < 4.0× 10−6 (54)

recently obtained by CDF [46], whereas for B(B → Kµ+µ−)n.r. the best bound-to-SM ratio is
around 9 [46]. Thus the K∗ mode provides a powerful tool to constraint |C10| and |C ′

10|, or
|ZL,R

bs |, via the relation

B(B → K∗µ+µ−)n.r. = B(B → K∗µ+µ−)n.r.|SM

+
(
4.1+1.0

−0.7

)
× 10−8

(
|C10 − C ′

10|2 − |C10|SM|2
)

+
(
0.9+0.4

−0.2

)
× 10−8

(
|C10 + C ′

10|2 − |C10|SM|2
)

, (55)

obtained by integrating (48). Using the bound (54) and setting C ′
10 = 0 we recover the result

of [19] |C10| <∼ 10, that in turn implies

∣∣∣ZL
bs

∣∣∣ <∼ 0.10 . (56)
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Note that, since C10 is basically dominated by the Z penguin already within the SM, the
maximal allowed value for |ZL

bs| is to a good approximation independent of the sign of ZL
bs. On

the other hand, if we allow also C ′
10 to be different from zero we find the relation

|C10|2 + |C ′
10|2 − (1.25± 0.05)× Re (C∗

10C
′
10)

<∼ 100 , (57)

where the coefficient of Re(C∗
10C

′
10) is quite stable with respect to variations of the form factors.

Varying arg(C10/C
′
10) over 2π we find |C10|, |C ′

10| <∼ 13, leading to

∣∣∣ZL,R
bs

∣∣∣ <∼ 0.13 . (58)

Due to the uncertainties in the form factors and the assumptions on the non-perturbative
non-resonant contributions, the bounds derived from Eq. (55) could appear less clean, from a
theoretical point of view, than those derived from the inclusive rates. We stress, however, that
even doubling the errors on the form factors the constraints in (56) and (58) do not increase
by more than 10%.

Though still at the border of most of the model predictions discussed in Section 3, the
bound (56) starts to provide a significant information. For instance, it strengthens the model-
independent character of the bounds (37) and (42) for the neutrino modes. As already discussed
in Section 5, if the experiments reached the SM sensitivity on B → K∗µ+µ−, more precise
information on C10 and C ′

10 could be obtained by relating the from factors of this mode to
those of its SU(3) partner B → ρeνe.

6.3 Forward-backward asymmetry in B → K∗µ+µ−

As anticipated, the possibility of detecting the leptons in the final state allows us to study
interesting asymmetries in the decay distribution of B → Hµ+µ− modes. The (lepton) forward-
backward asymmetry of B̄ → K̄∗µ+µ− can be defined as

A(B̄)
FB(s) =

1

dΓ(B̄ → K̄∗µ+µ−)/ds

∫ 1

−1
d cos θ

d2Γ(B̄ → K̄∗µ+µ−)

ds d cos θ
sgn(cos θ) , (59)

where θ is the angle between the momenta of µ+ and B̄ in the dilepton center-of-mass frame.
Given the vector or axial-vector structure of the leptonic current generated by Heff , this
asymmetry can be different from zero only if the final hadronic system has a non-vanishing
angular momentum and therefore it is identically zero in the case of B(B̄) → K(K̄)µ+µ−.

The explicit expression for A(B̄)
FB(s) in terms of Wilson coefficients and form factors can be

written as

A(B̄)
FB(s) = − G2

F α2m5
B |V ∗

tsVtb|2
256π5dΓ(B̄ → K̄∗µ+µ−)/ds

λK∗(s) |V (s)A1(s)|

×Re

{
C∗

10

[
s Ceff

9 (s) + α+(s)
mbC7

mB

+ α−(s)
mbC7C

′∗
10

mBC∗
10

]}
, (60)

where

α±(s) =
T2(s)

A1(s)
(1−√rK∗)± T1(s)

V (s)
(1 +

√
rK∗) (61)
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Figure 4: Forward-backward asymmetry for B̄ → K̄∗µ+µ−, defined as in (59). The solid
(dotted) curves have been obtained employing the Krüger-Sehgal approach (using Ceff

9 (s) ≡
CEP

9 (s) ). The dashed lines show the effect of varying the renormalization scale of the Wilson
Coefficients between mb/2 and 2mb, within the Krüger-Sehgal approach.

and we have used the model-independent relation between the signs of V (s) and A1(s), dis-

cussed in Section 4.2, to elucidate the overall sign of A(B̄)
FB(s).

The ratios of form factors in (61) can be determined to a good accuracy by means of
those entering B → ρeν decays, leading to a precise determination of the point s0 where

A(B̄)
FB(s0) = 0 [47]. The interest in the zero of A(B̄)

FB(s) is further reinforced by the fact that
most of the intrinsic hadronic uncertainties affecting T1,2, A1 and V cancel in α±(s) [19, 47], an
observation that can be justified in the large-energy expansion of heavy-to-light form factors
[34]. In this limit it is also easy to realize that |α−(s)/α+(s)| = rK∗/(1− s) � 1, so that the
term proportional to C ′

10 in (60) is to a good approximation negligible. Since the position of
s0 does not depend on magnitude or sign of C10 (assuming C10 6= 0) we conclude that within

our New Physics scenario the zero of A(B̄)
FB(s) remains unchanged with respect to the SM case

(s0|SM = 0.10+0.02
−0.01 [19]).

Contrary to s0, magnitude and sign of the forward-backward asymmetry can be very much
affected by possible non-standard contributions to C10. The sign, in particular, is of great
interest being related in a model-independent way to the relative signs of the Wilson coefficients.
This relation deserves a clarifying discussion, as there is apparently some confusion on this issue
in the recent literature.

• First of all we stress that the sign is different for B and B̄ decays. In fact, in the limit
of CP conservation one expects

A(B̄)
FB(s) = −A(B)

FB(s) . (62)
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This can be easily understood by noting that CP conjugation requires not only the
exchange b ↔ b̄ but also the one of µ+ ↔ µ−. Since the two leptons are emitted back
to back in the dilepton center-of-mass frame, the asymmetry defined in terms of the
direction of the positive charged lepton (both for B and B̄), changes sign under CP
conjugation.

• The sign in (60) implies that within the SM, where Re(C∗
10C9) < 0, A(B̄)

FB(s) is positive
for s > s0 (see Fig. 4). This coincides with the SM behavior of the inclusive forward-
backward asymmetry of the process b → sµ+µ− (see e.g. [41]) and indeed it has a simple
partonic interpretation (we recall that we denote by B̄ the meson with a valence b quark).
At sufficiently large values of q2 the contribution of C7 can be neglected and, within the
SM, the decay is almost a pure (V − A) × (V − A) interaction (C10|SM ≈ −C9). In
the B̄ rest frame the emitted s quark tends to be left-handed polarized and, when its
spin is combined with the one of the spectator, this leads to a K̄∗ meson with helicity
−1 or 0. Since the initial B̄ meson has spin 0, the total helicity of the recoiling lepton
pair must also be −1 or 0, respectively. If it is zero then there is no forward-backward
asymmetry, as in the B̄ → K̄µ+µ− case. On the other hand, if the polarization of the
lepton pair is −1, then the positive lepton prefers to travel backward with respect to
the total momentum of the dilepton system, or in the direction of the K∗ meson. This

configuration corresponds to a positive cos θ, leading to a positive A(B̄)
FB(s).

Having firmly established the sign of A(B̄)
FB(s) within the SM, a striking signal of New Physics

could clearly be observed if sgn(ReC10) = −sgn(ReC10|SM). In this case A(B̄)
FB(s) would be

positive for s < s0 and negative for s > s0, opposite to the SM expectation. Similarly, a clear

signal of non-standard dynamics would occur if ReC10 was purely imaginary, so that A(B̄)
FB(s)

would be very much suppressed with respect to the SM case. Note that in both of these
examples one could still have an absolute value of C10 close to its SM expectation, hiding these
New Physics effects in branching ratios and dilepton spectra.

6.3.1 Forward-backward CP asymmetry

More generally, a powerful tool to probe a possible CP -violating phase in C10 is provided
by the sum of the forward-backward asymmetries of B̄ and B decays, which is expected to
vanish in the absence of CP violation. For this purpose we introduce the forward-backward
CP asymmetry, defined as

ACP
FB(s) =

A(B̄)
FB(s) +A(B)

FB(s)

A(B̄)
FB(s)−A(B)

FB(s)
. (63)

This observable is very small within the SM, where the CP -violating phases of the relevant
Wilson coefficients are suppressed by the factor Im(VubV

∗
us/VtbV

∗
ts) ∼ O(ηλ2) ∼ 0.01. The

explicit calculation of ACP
FB(s) within the SM requires to keep the small uū contribution in

Ceff
9 (s) (see e.g. [48]), which we have so far neglected. Employing the partonic calculation for

both uū and cc̄ loops we find

ACP
FB(s)

∣∣∣
SM

=
Im(VubV

∗
us)

Re(VcbV ∗
cs)

Im
[
h
(

mc

mb
,

m2
B

m2
b
s
)
− h

(
0,

m2
B

m2
b
s
)]

(3C1 + C2)

ReCeff
9 (s)
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Figure 5: The forward-backward CP asymmetry defined in (63), in units of ImC10/ReC10, as
a function of s. Solid and dotted lines correspond to the Krüger-Sehgal approach and to the
choice Ceff

9 (s) ≡ CEP
9 (s), respectively. The vertical dashed line denotes the lower limit of the

integration range in (66).

×
[
1 +

α+(s)

s

mbC7

mBReCeff
9 (s)

]−1

, (64)

which in the region above the Ψ′ peak leads to an integrated asymmetry below 10−3.
On the other hand, if we allow C10 to have a large CP -violating phase and neglect those

of C7 and C9, as expected within our generic non-standard framework, we find

ACP
FB(s) =

ImC10

ReC10

ImCeff
9 (s)

ReCeff
9 (s)

[
1 +

α+(s)

s

mbC7

mBReCeff
9 (s)

]−1

, (65)

which can be substantially different from zero above the cc̄ threshold if ImC10/ReC10 ∼ O(1).
Note that the expression (65) is almost free from uncertainties in the form factors, since for
large s (where ImCeff

9 (s) 6= 0) the term proportional to C7 is rather small. Unfortunately this
virtue is somewhat compensated by the uncertainties in ImCeff

9 (s) discussed in Section 6.1. A
plot of ACP

FB(s), in units of ImC10/ReC10, in the interesting region above the Ψ peak is shown
in Fig. 5.

To decrease the effect of the non-perturbative uncertainties in ImCeff
9 (s) it is convenient to

integrate ACP
FB(s) over a large interval of q2. To avoid the uncontrollable errors associated with

the narrow Ψ and Ψ′ peaks, as well as with the D−D̄ threshold, we consider a safe integration
region

q2
min = 14.5 GeV2 ≤ q2 < (mB −mK∗)2 = q2

max , (66)
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where we find

∆ACP
FB =

∫ smax

smin

dsACP
FB(s) = (0.03± 0.01)× ImC10

ReC10

. (67)

The central value in (67) has been obtained within the Krüger-Sehgal approach, whereas the
error has been estimated by comparing this result with the one obtained by identifying Ceff

9 (s)
with CEP

9 (s). Here and in Fig. 5 we did not use any phenomenological correction factors for
the resonance contributions in applying the KS method, that is we put κV = 1 (notation of
[43]).

Unfortunately the numerical coefficient of ImC10/ReC10 in ∆ACP
FB is rather suppressed,

however it leaves open the possibility of O(10%) effects. These would naturally occur if the
non-standard contributions to ZL

bs had the same magnitude as the SM term and a CP -violating
phase of O(1), a scenario that is allowed in most of the specific models discussed in Section 3.

7 Bs → µ+µ−

The constraint (57) implies also an upper bound for B(Bs → µ+µ−) in our generic non-standard
scenario. Introducing the Bs decay constant, fBs, the decay rate for this process can be written
as

Γ(Bs → µ+µ−) =
G2

Fα2

16π3
f 2

Bs
|V ∗

tsVtb|2mBsm
2
µ

(
1− 4m2

µ

m2
Bs

)1/2

|C10 − C ′
10|2 , (68)

implying

B(Bs → µ+µ−) = B(Bs → µ+µ−)|SM ×
∣∣∣∣∣C10 − C ′

10

C10|SM

∣∣∣∣∣
2

. (69)

Using the constraint (57) we then find a maximal enhancement of a factor 7 for B(Bs → µ+µ−)
with respect to the SM value.

Employing the full next-to-leading order expression for C10|SM [6, 31, 32] one has

B(Bs → µ+µ−)
∣∣∣
SM

= 3.4× 10−9

(
fBs

0.210GeV

)2 ( |Vts|
0.040

)2 (
τBs

1.6ps

)(
mt(mt)

170GeV

)3.12

. (70)

Allowing for the maximal enhancement in (69) and adopting conservative upper bounds for
the ratios in (70) we finally obtain

B(Bs → µ+µ−) < 3.4× 10−8 , (71)

which is about two orders of magnitude below the current best limit from CDF [49]: B(Bs →
µ+µ−) < 2.6× 10−6 (95% C.L.).

8 Summary and conclusions

We have presented a study of the rare decay modes B → K(∗)νν̄, B → K(∗)`+`− and Bs →
µ+µ−, which are mediated by b → s FCNC transitions. These processes have long been
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recognized as very interesting probes of the flavour sector where New Physics effects could
modify considerably the Standard Model expectations.

In this paper we have pursued the idea that the largest deviations from the Standard Model
could arise in the FCNC couplings of the Z boson. We have thus investigated a scenario where
new dynamics determines the s̄L,RγµbL,RZµ interactions, while the contributions of a different
origin (boxes, photonic penguins) are still, to a good approximation, given by their Standard
Model values. As we have shown, this scenario is both phenomenologically and theoretically
well motivated. Indeed, contrary to other FCNC amplitudes, the s̄bZ couplings are not yet
very well constrained by experimental data and considerable room for substantial modifications
still exists. On the other hand, also on theoretical grounds these couplings play a special role
and are potentially dominant in the presence of a high scale of New Physics. It has also been
shown that such a generic scenario could naturally arise in specific and consistent extensions
of the SM, as for instance in the framework of Supersymmetry.

Within the Standard Model the following branching ratios are expected, listed here in
comparison with the current experimental limits:

B(B → Kνν̄) ≈ 4× 10−6 (< 7.7× 10−4 [39])
B(B → K∗νν̄) ≈ 1.3× 10−5 (< 7.7× 10−4 [39])

B(B → Kµ+µ−)n.r. ≈ 6× 10−7 (< 5.2× 10−6 [46])
B(B → K∗µ+µ−)n.r. ≈ 2× 10−6 (< 4× 10−6 [46])

B(Bs → µ+µ−) ≈ 3× 10−9 (< 2.6× 10−6 [49])

(72)

The Standard Model estimates have at present hadronic uncertainties of typically ±30%. Our
generic New Physics scenario still allows for substantial enhancements that could saturate the
experimental bounds for B → K∗µ+µ− and increase the remaining branching fractions by
factors of 5 to 10.

An observable of particular interest is the forward-backward asymmetry A(B̄)
FB in B̄ →

K̄∗µ+µ− decay. This quantity is complementary to rate measurements and can reveal non-
standard flavourdynamics that might remain invisible from the decay rates alone. We have
clarified the sign of the asymmetry within the Standard Model. The sign (as a function of
the dilepton mass) has the same behaviour in the exclusive channel B̄ → K̄∗µ+µ− as in the
inclusive decay b → sµ+µ−. As we have shown, even for the hadronic process B̄ → K̄∗µ+µ−

the sign of A(B̄)
FB can be fixed in a model-independent way. This property provides us with an

important Standard Model test. The “wrong” sign of the experimentally measured A(B̄)
FB would

be a striking manifestation of New Physics. Such a test is comparable, and complementary, to
determining the position of the AFB zero, whose usefulness as a clean probe of New Physics
has been stressed in the literature. An interesting observation is that within our scenario of

non-standard Z couplings the asymmetry A(B̄)
FB is likely to be affected, possibly including even a

change of sign, while this class of New Physics would leave the A(B̄)
FB zero essentially unchanged.

Finally, we have emphasized that the CP violating forward-backward asymmetry ACP
FB is

an interesting probe of non-standard CP violation in the s̄bZ couplings. Potential effects are
of order 10%, compared to an entirely negligible Standard Model asymmetry of about 10−3.

Similar observables can also be studied with inclusive modes such as b → sµ+µ−, which
are theoretically cleaner and could play an important role for precision tests in the future.
Nevertheless, on a shorter term the exclusive channels are more accessible experimentally, in
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particular at hadron machines. As we have seen, exciting possibilities for tests of the flavour
sector exist also in this case in spite of, in general, larger hadronic uncertainties. The pursuit
of these opportunities in rare B decays will certainly contribute to a deeper understanding of
flavour physics in the Standard Model and beyond.
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We thank J. Hewett, S. Mele, M. Plümacher and T. Rizzo for interesting discussions. The
work of G.I. has been supported in part by the German Bundesministerium für Bildung und
Forschung under contract 05HT9WOA0.

24



References

[1] S. Adler et al. (BNL-E787 Collaboration), hep-ex/0002015; Phys. Rev. Lett. 79 (1997)
2204.

[2] S. Ahmed et al. (CLEO Collaboration), hep-ex/9908022;
R. Barate et al. (ALEPH Collaboration), Phys. Lett. B 429 (1998) 169.

[3] G. Colangelo and G. Isidori, JHEP 09 (1998) 009.

[4] L. Silvestrini, hep-ph/9906202.

[5] A.J. Buras and L. Silvestrini, Nucl. Phys. B 546 (1999) 299.

[6] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125.

[7] S. Glenn et al. (CLEO Collaboration), Phys. Rev. Lett. 80 (1998) 2289.

[8] The ALEPH Collaboration, Rep. No PA 10-019, contributed paper to the 28th Int. Con-
ference on High Energy Physics, 25-31 July, 1996, Warsaw, Poland.

[9] Y. Grossman, A. Kagan and M. Neubert, hep-ph/9909297.

[10] Y. Grossman, Z. Ligeti and E. Nardi, Nucl. Phys. B 465 (1996) 369; ibid. B480 (1986)
753 (E).

[11] G. Buchalla, G. Isidori and S.J. Rey, Nucl. Phys. B 511 (1998) 594.

[12] L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.

[13] L3 note 2416, contributed paper to the Int. Europhysics Conference High Energy Physics
99, 15-21 July, 1999, Tampere, Finland.

[14] P.H. Frampton and P.Q. Hung, hep-ph/9903387.

[15] C.S. Huang, W.J. Huo and Y.L. Wu, hep-ph/9911203;
T.M. Aliev, A. Ozpineci and M. Savci, hep-ph/0002061.

[16] S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981) 150;
J. Ellis and D.V. Nanopoulos, Phys. Lett. B 110 (1982) 44;
R. Barbieri and R. Gatto, Phys. Lett. B 110 (1982) 211;
M.J. Duncan, Nucl. Phys. B B221 (1983) 285;
J.F. Donoghue, H.P. Nilles and D. Wyler, Phys. Lett. B 128 (1983) 55.

[17] L.J. Hall, V.A. Kostelecky and S. Rabi, Nucl. Phys. B 267 (1986) 415.

[18] E. Lunghi, A. Masiero, I. Scimemi and L. Silvestrini, Nucl. Phys. B 568 (2000) 120.

[19] A. Ali, P. Ball, L.T. Handoko and G. Hiller, Phys. Rev. D 61 (2000) 074024.

[20] E. Lunghi and I. Scimemi, Nucl. Phys. B 574 (2000) 43.

25
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