8 research outputs found

    Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling

    No full text
    Many industrial activities result in heavy metal dispersion in the environment worldwide. Heavy metals are persistent contaminants, which get into contact with living organisms and humans creating serious environmental disorders. Metals are commonly removed from wastewaters by means of physical-chemical processes, but often microbes are also enrolled to control metal fate. When microorganisms are used as biosorbents for metal entrapment, a process called “biosorption” occurs. Biosorption efficiency is significantly influenced by many parameters such as environmental factors, the sorbing material and the metal species to be removed, and highly depends on whether microbial cultures are alive or dead. Moreover, the presence of biofilm agglomerates is of major importance for metal uptake onto extracellular polymeric substances. In this chapter, the effect of the above mentioned variables on biosorption performance was reviewed. Among the environmental factors, pH rules metal mobility and speciation. Temperature has a lower influence with an optimal value ranging between 20 and 35 °C. The co-presence of more metals usually decreases the biosorption efficiency of each single metal. Biosorption efficiency can be enhanced by using living microorganisms due to the interaction with active functional groups and the occurrence of transport phenomena into the cells. The existing mathematical modeling approaches used for heavy metal biosorption were overviewed. Several isotherms, obtained in batch conditions, are available for modeling biosorption equilibria and kinetics. In continuous systems, most of the models are used to predict the breakthrough curves. However, the modeling of complex continuous-flow reactors requires further research efforts for better incorporating the effect of the operating parameters and hydrodynamics

    Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment

    No full text
    International audienceThe removal of contaminants from wastewaters is a matter of great interest in the field of water pollution. Amongst the numerous techniques of contaminant removal, adsorption using solid materials (named adsorbents) is a simple, useful and effective process. The adsorbent may be of mineral, organic or biological origin. Activated carbon is the preferred material at industrial scale and is extensively used not only for removing pollutants from wastewater streams but also for adsorbing contaminants from drinking water sources (e.g. rivers, lakes or reservoirs). However, its widespread use is restricted due to high cost. In the last three decades, numerous approaches have been studied for the development of cheaper and more effective adsorbents capable to eliminate pollutants at trace levels. This chapter gives a general overview of liquid-solid adsorption processes using conventional and non-conventional materials for pollutant removal. It outlines some of the principles of adsorption and proposes a classification for the different types of materials. Finally, the chapter discusses different mechanisms involved in the adsorption phenomena

    Removal of Heavy Metals from Waste Water by using Various Adsorbents- A Review

    No full text
    corecore